scholarly journals Existence of a nonoscillatory solution of a second-order linear neutral difference equation

2007 ◽  
Vol 20 (8) ◽  
pp. 892-899 ◽  
Author(s):  
Jinfa Cheng

2008 ◽  
Vol 2 (6) ◽  
Author(s):  
Shasha Zhang ◽  
Xiaozhu Zhong ◽  
Ping Yu ◽  
Wenxia Zhang ◽  
Ning Li


2007 ◽  
Vol 53 (7) ◽  
pp. 1129-1139 ◽  
Author(s):  
Zuzana Došlá ◽  
Šárka Pechancová


1981 ◽  
Vol 90 (3) ◽  
pp. 385-387 ◽  
Author(s):  
B. G. S. Doman ◽  
J. K. Williams

The Fibonacci and Lucas polynomials Fn(z) and Ln(z) are denned. These reduce to the familiar Fibonacci and Lucas numbers when z = 1. The polynomials are shown to satisfy a second order linear difference equation. Generating functions are derived, and also various simple identities, and relations with hypergeometric functions, Gegenbauer and Chebyshev polynomials.



2015 ◽  
Vol 46 (4) ◽  
pp. 441-451 ◽  
Author(s):  
Ethiraju Thandapani ◽  
Devarajulu Seghar ◽  
Sandra Pinelas

In this paper we obtain some new oscillation criteria for the neutral difference equation \begin{equation*} \Delta \Big(a_n (\Delta (x_n-p_n x_{n-k}))\Big)+q_n f(x_{n-l})=0 \end{equation*} where $0\leq p_n\leq p0$ and $l$ and $k$ are positive integers. Examples are presented to illustrate the main results. The results obtained in this paper improve and complement to the existing results.







2021 ◽  
Vol 37 (3) ◽  
pp. 489-495
Author(s):  
MASAKAZU ONITSUKA ◽  
◽  

In J. Comput. Anal. Appl. (2020), pp. 152--165, the author dealt with Hyers--Ulam stability of the second-order linear difference equation $\Delta_h^2x(t)+\alpha \Delta_hx(t)+\beta x(t) = f(t)$ on $h\mathbb{Z}$, where $\Delta_hx(t) = (x(t+h)-x(t))/h$ and $h\mathbb{Z} = \{hk|\,k\in\mathbb{Z}\}$ for the step size $h>0$; $\alpha$ and $\beta$ are real numbers; $f(t)$ is a real-valued function on $h\mathbb{Z}$. The purpose of this paper is to clarify that the second-order linear difference equation has no Hyers--Ulam stability when the step size $h>0$ and the coefficients $\alpha$ and $\beta$ satisfy suitable conditions. Finally, a necessary and sufficient condition for Hyers--Ulam stability is obtained.





Sign in / Sign up

Export Citation Format

Share Document