scholarly journals A line digraph of a complete bipartite digraph

2009 ◽  
Vol 22 (4) ◽  
pp. 544-547 ◽  
Author(s):  
Juan Liu ◽  
Lin Sun ◽  
Jixiang Meng
2020 ◽  
Vol 29 (6) ◽  
pp. 886-899
Author(s):  
Anita Liebenau ◽  
Yanitsa Pehova

AbstractA diregular bipartite tournament is a balanced complete bipartite graph whose edges are oriented so that every vertex has the same in- and out-degree. In 1981 Jackson showed that a diregular bipartite tournament contains a Hamilton cycle, and conjectured that in fact its edge set can be partitioned into Hamilton cycles. We prove an approximate version of this conjecture: for every ε > 0 there exists n0 such that every diregular bipartite tournament on 2n ≥ n0 vertices contains a collection of (1/2–ε)n cycles of length at least (2–ε)n. Increasing the degree by a small proportion allows us to prove the existence of many Hamilton cycles: for every c > 1/2 and ε > 0 there exists n0 such that every cn-regular bipartite digraph on 2n ≥ n0 vertices contains (1−ε)cn edge-disjoint Hamilton cycles.


2003 ◽  
Vol 04 (04) ◽  
pp. 377-393 ◽  
Author(s):  
C. Balbuena ◽  
D. Ferrero ◽  
X. Marcote ◽  
I. Pelayo

Let G be a digraph, LG its line digraph and A(G) and A(LG) their adjacency matrices. We present relations between the Jordan Normal Form of these two matrices. In addition, we study the spectra of those matrices and obtain a relationship between their characteristic polynomials that allows us to relate properties of G and LG, specifically the number of cycles of a given length.


2014 ◽  
Vol Vol. 16 no. 1 (Graph Theory) ◽  
Author(s):  
Janusz Adamus ◽  
Lech Adamus ◽  
Anders Yeo

Graph Theory International audience We prove a sharp Meyniel-type criterion for hamiltonicity of a balanced bipartite digraph: For a≥2, a strongly connected balanced bipartite digraph D on 2a vertices is hamiltonian if d(u)+d(v)≥3a whenever uv∉A(D) and vu∉A(D). As a consequence, we obtain a sharp sufficient condition for hamiltonicity in terms of the minimal degree: a strongly connected balanced bipartite digraph D on 2a vertices is hamiltonian if δ(D)≥3a/2.


2018 ◽  
Vol 28 (3) ◽  
pp. 423-464 ◽  
Author(s):  
DONG YEAP KANG

Mader proved that every strongly k-connected n-vertex digraph contains a strongly k-connected spanning subgraph with at most 2kn - 2k2 edges, where equality holds for the complete bipartite digraph DKk,n-k. For dense strongly k-connected digraphs, this upper bound can be significantly improved. More precisely, we prove that every strongly k-connected n-vertex digraph D contains a strongly k-connected spanning subgraph with at most kn + 800k(k + Δ(D)) edges, where Δ(D) denotes the maximum degree of the complement of the underlying undirected graph of a digraph D. Here, the additional term 800k(k + Δ(D)) is tight up to multiplicative and additive constants. As a corollary, this implies that every strongly k-connected n-vertex semicomplete digraph contains a strongly k-connected spanning subgraph with at most kn + 800k2 edges, which is essentially optimal since 800k2 cannot be reduced to the number less than k(k - 1)/2.We also prove an analogous result for strongly k-arc-connected directed multigraphs. Both proofs yield polynomial-time algorithms.


1988 ◽  
Vol 4 (1) ◽  
pp. 235-239 ◽  
Author(s):  
Masatosi Imori ◽  
Makoto Matsumoto ◽  
Hisao Yamada
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document