scholarly journals On the Meyniel condition for hamiltonicity in bipartite digraphs

2014 ◽  
Vol Vol. 16 no. 1 (Graph Theory) ◽  
Author(s):  
Janusz Adamus ◽  
Lech Adamus ◽  
Anders Yeo

Graph Theory International audience We prove a sharp Meyniel-type criterion for hamiltonicity of a balanced bipartite digraph: For a≥2, a strongly connected balanced bipartite digraph D on 2a vertices is hamiltonian if d(u)+d(v)≥3a whenever uv∉A(D) and vu∉A(D). As a consequence, we obtain a sharp sufficient condition for hamiltonicity in terms of the minimal degree: a strongly connected balanced bipartite digraph D on 2a vertices is hamiltonian if δ(D)≥3a/2.

2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Boram Park ◽  
Yoshio Sano

Graph Theory International audience In 1982, Opsut showed that the competition number of a line graph is at most two and gave a necessary and sufficient condition for the competition number of a line graph being one. In this paper, we generalize this result to the competition numbers of generalized line graphs, that is, we show that the competition number of a generalized line graph is at most two, and give necessary conditions and sufficient conditions for the competition number of a generalized line graph being one.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Mauricio Soto ◽  
Christopher Thraves-Caro

Graph Theory International audience In this document, we study the scope of the following graph model: each vertex is assigned to a box in ℝd and to a representative element that belongs to that box. Two vertices are connected by an edge if and only if its respective boxes contain the opposite representative element. We focus our study on the case where boxes (and therefore representative elements) associated to vertices are spread in ℝ. We give both, a combinatorial and an intersection characterization of the model. Based on these characterizations, we determine graph families that contain the model (e. g., boxicity 2 graphs) and others that the new model contains (e. g., rooted directed path). We also study the particular case where each representative element is the center of its respective box. In this particular case, we provide constructive representations for interval, block and outerplanar graphs. Finally, we show that the general and the particular model are not equivalent by constructing a graph family that separates the two cases.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Dieter Rautenbach ◽  
Friedrich Regen

Graph Theory International audience We study graphs G in which the maximum number of vertex-disjoint cycles nu(G) is close to the cyclomatic number mu(G), which is a natural upper bound for nu(G). Our main result is the existence of a finite set P(k) of graphs for all k is an element of N-0 such that every 2-connected graph G with mu(G)-nu(G) = k arises by applying a simple extension rule to a graph in P(k). As an algorithmic consequence we describe algorithms calculating minmu(G)-nu(G), k + 1 in linear time for fixed k.


2017 ◽  
Vol 40 (9) ◽  
pp. 2748-2755 ◽  
Author(s):  
Huanyu Zhao ◽  
Shumin Fei

This paper investigates the consensus problem for heterogeneous multi-agent systems consisting of third-order and first-order agents. The interaction topology includes both fixed and switching cases. First, by a model transformation, heterogeneous multi-agent systems are converted into equivalent error systems. Then we analyze the consensus problem of the multi-agent systems by analyzing the stability problem of the error systems. For a fixed topology, a sufficient condition for consensus of heterogeneous multi-agent systems is obtained based on algebraic graph theory and linear system theory. For a switching topology, a necessary and sufficient condition for mean-square consensus of multi-agent systems is obtained based on algebraic graph theory and Markovian jump system theory. Finally, we give some simulation examples.


2013 ◽  
Vol Vol. 15 no. 3 (Graph Theory) ◽  
Author(s):  
Delia Garijo ◽  
Antonio González ◽  
Alberto Márquez

Graph Theory International audience We study a graph parameter related to resolving sets and metric dimension, namely the resolving number, introduced by Chartrand, Poisson and Zhang. First, we establish an important difference between the two parameters: while computing the metric dimension of an arbitrary graph is known to be NP-hard, we show that the resolving number can be computed in polynomial time. We then relate the resolving number to classical graph parameters: diameter, girth, clique number, order and maximum degree. With these relations in hand, we characterize the graphs with resolving number 3 extending other studies that provide characterizations for smaller resolving number.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Anton Pierre Burger ◽  
Alewyn Petrus Villiers ◽  
Jan Harm Vuuren

Graph Theory International audience A subset X of the vertex set of a graph G is a secure dominating set of G if X is a dominating set of G and if, for each vertex u not in X, there is a neighbouring vertex v of u in X such that the swap set (X-v)∪u is again a dominating set of G. The secure domination number of G is the cardinality of a smallest secure dominating set of G. A graph G is p-stable if the largest arbitrary subset of edges whose removal from G does not increase the secure domination number of the resulting graph, has cardinality p. In this paper we study the problem of computing p-stable graphs for all admissible values of p and determine the exact values of p for which members of various infinite classes of graphs are p-stable. We also consider the problem of determining analytically the largest value ωn of p for which a graph of order n can be p-stable. We conjecture that ωn=n-2 and motivate this conjecture.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Boštjan Brešar ◽  
Sandi Klavžar ◽  
Gasper Košmrlj ◽  
Doug F. Rall

Graph Theory International audience We introduce the concept of guarded subgraph of a graph, which as a condition lies between convex and 2-isometric subgraphs and is not comparable to isometric subgraphs. Some basic metric properties of guarded subgraphs are obtained, and then this concept is applied to the domination game. In this game two players, Dominator and Staller, alternate choosing vertices of a graph, one at a time, such that each chosen vertex enlarges the set of vertices dominated so far. The aim of Dominator is that the graph is dominated in as few steps as possible, while the aim of Staller is just the opposite. The game domination number is the number of vertices chosen when Dominator starts the game and both players play optimally. The main result of this paper is that the game domination number of a graph is not smaller than the game domination number of any guarded subgraph. Several applications of this result are presented.


2014 ◽  
Vol Vol. 16 no. 1 (Graph Theory) ◽  
Author(s):  
Hosam Abdo ◽  
Stephan Brandt ◽  
D. Dimitrov

Graph Theory International audience In this note a new measure of irregularity of a graph G is introduced. It is named the total irregularity of a graph and is defined as irr(t)(G) - 1/2 Sigma(u, v is an element of V(G)) vertical bar d(G)(u) - d(G)(v)vertical bar, where d(G)(u) denotes the degree of a vertex u is an element of V(G). All graphs with maximal total irregularity are determined. It is also shown that among all trees of the same order the star has the maximal total irregularity.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Takuro Abe ◽  
Daisuke Suyama ◽  
Shuhei Tsujie

International audience The Ish arrangement was introduced by Armstrong to give a new interpretation of the $q; t$-Catalan numbers of Garsia and Haiman. Armstrong and Rhoades showed that there are some striking similarities between the Shi arrangement and the Ish arrangement and posed some problems. One of them is whether the Ish arrangement is a free arrangement or not. In this paper, we verify that the Ish arrangement is supersolvable and hence free. Moreover, we give a necessary and sufficient condition for the deleted Ish arrangement to be free L’arrangement Ish a été introduit par Armstrong pour donner une nouvelle interprétation des nombres $q; t$-Catalan de Garsia et Haiman. Armstrong et Rhoades ont montré qu’il y avait des ressemblances frappantes entre l’arrangement Shi et l’arrangement Ish et ont posé des conjectures. L’une d’elles est de savoir si l’arrangement Ish est un arrangement libre ou pas. Dans cet article, nous vérifions que l’arrangement Ish est supersoluble et donc libre. De plus, on donne une condition nécessaire et suffisante pour que l’arrangement Ish réduit soit libre.


2014 ◽  
Vol Vol. 16 no. 1 (Graph Theory) ◽  
Author(s):  
Jiyun Guo ◽  
Jianhua Yin

Graph Theory International audience Let (a1,a2,\textellipsis,an) and (b1,b2,\textellipsis,bn) be two sequences of nonnegative integers satisfying the condition that b1>=b2>=...>=bn, ai<= bi for i=1,2,\textellipsis,n and ai+bi>=ai+1+bi+1 for i=1,2,\textellipsis, n-1. In this paper, we give two different conditions, one of which is sufficient and the other one necessary, for the sequences (a1,a2,\textellipsis,an) and (b1,b2,\textellipsis,bn) such that for every (c1,c2,\textellipsis,cn) with ai<=ci<=bi for i=1,2,\textellipsis,n and &#x2211;&limits;i=1n ci=0 (mod 2), there exists a simple graph G with vertices v1,v2,\textellipsis,vn such that dG(vi)=ci for i=1,2,\textellipsis,n. This is a variant of Niessen\textquoterights problem on degree sequences of graphs (Discrete Math., 191 (1998), 247&#x2013;253).


Sign in / Sign up

Export Citation Format

Share Document