scholarly journals Nonexistence and existence of positive solutions for the Kirchhoff type equation

2019 ◽  
Vol 96 ◽  
pp. 202-207 ◽  
Author(s):  
Mingzheng Sun ◽  
Ziliang Yang ◽  
Hongrui Cai
Author(s):  
Vincenzo Ambrosio ◽  
Teresa Isernia

AbstractIn this paper, we study a class of (p, q)-Schrödinger–Kirchhoff type equations involving a continuous positive potential satisfying del Pino–Felmer type conditions and a continuous nonlinearity with subcritical growth at infinity. By applying variational methods, penalization techniques and Lusternik–Schnirelman category theory, we relate the number of positive solutions with the topology of the set where the potential attains its minimum values.


2018 ◽  
Vol 26 (1) ◽  
pp. 5-41 ◽  
Author(s):  
Baoqiang Yan ◽  
Donal O’Regan ◽  
Ravi P. Agarwal

Abstract In this paper we discuss the existence of a solution between wellordered subsolution and supersolution of the Kirchhoff equation. Using the sub-supersolution method together with a Rabinowitz-type global bifurcation theory, we establish the existence of positive solutions for Kirchhoff-type problems when the nonlinearity is singular or sign-changing. Moreover, we obtain some necessary and sufficient conditions for the existence of positive solutions for the problem when N = 1.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Mustafa Avci ◽  
Rabil Ayazoglu (Mashiyev)

In view of variational approach we discuss a nonlocal problem, that is, a Kirchhoff-type equation involving -Laplace operator. Establishing some suitable conditions, we prove the existence and multiplicity of solutions.


2021 ◽  
Vol 11 (1) ◽  
pp. 598-619
Author(s):  
Guofeng Che ◽  
Tsung-fang Wu

Abstract We study the following Kirchhoff type equation: − a + b ∫ R N | ∇ u | 2 d x Δ u + u = k ( x ) | u | p − 2 u + m ( x ) | u | q − 2 u     in     R N , $$\begin{equation*}\begin{array}{ll} -\left(a+b\int\limits_{\mathbb{R}^{N}}|\nabla u|^{2}\mathrm{d}x\right)\Delta u+u =k(x)|u|^{p-2}u+m(x)|u|^{q-2}u~~\text{in}~~\mathbb{R}^{N}, \end{array} \end{equation*}$$ where N=3, a , b > 0 $ a,b \gt 0 $ , 1 < q < 2 < p < min { 4 , 2 ∗ } $ 1 \lt q \lt 2 \lt p \lt \min\{4, 2^{*}\} $ , 2≤=2N/(N − 2), k ∈ C (ℝ N ) is bounded and m ∈ L p/(p−q)(ℝ N ). By imposing some suitable conditions on functions k(x) and m(x), we firstly introduce some novel techniques to recover the compactness of the Sobolev embedding H 1 ( R N ) ↪ L r ( R N ) ( 2 ≤ r < 2 ∗ ) $ H^{1}(\mathbb{R}^{N})\hookrightarrow L^{r}(\mathbb{R}^{N}) (2\leq r \lt 2^{*}) $ ; then the Ekeland variational principle and an innovative constraint method of the Nehari manifold are adopted to get three positive solutions for the above problem.


Sign in / Sign up

Export Citation Format

Share Document