scholarly journals Characterization of heparin and severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions

2020 ◽  
Vol 181 ◽  
pp. 104873 ◽  
Author(s):  
So Young Kim ◽  
Weihua Jin ◽  
Amika Sood ◽  
David W. Montgomery ◽  
Oliver C. Grant ◽  
...  
2004 ◽  
Vol 101 (12) ◽  
pp. 4240-4245 ◽  
Author(s):  
G. Simmons ◽  
J. D. Reeves ◽  
A. J. Rennekamp ◽  
S. M. Amberg ◽  
A. J. Piefer ◽  
...  

2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Pragya D Yadav ◽  
Dimpal A Nyayanit ◽  
Rima R Sahay ◽  
Prasad Sarkale ◽  
Jayshri Pethani ◽  
...  

We have isolated the new severe acute respiratory syndrome coronavirus-2 variant of concern 202 012/01 from the positive coronavirus disease 2019 cases that travelled from the UK to India in the month of December 2020. This emphasizes the need for the strengthened surveillance system to limit the local transmission of this new variant.


2021 ◽  
Author(s):  
Nageswari Yarravarapu ◽  
Rohit Sai Reddy Konada ◽  
Narek Darabedian ◽  
Nichole J. Pedowtiz ◽  
Soumya N. Krishnamurthy ◽  
...  

Glycan binding often mediates extracellular macromolecular recognition events. Accurate characterization of these binding interactions can be difficult because of dissociation and scrambling that occur during purification and analysis steps. Use of photocrosslinking methods has been pursued to covalently capture glycan-dependent interactions in situ however use of metabolic glycan engineering methods to incorporate photocrosslinking sugar analogs is limited to certain cell types. Here we report an exo-enzymatic labeling method to add a diazirine-modified sialic acid (SiaDAz) to cell surface glycoconjugates. The method involves chemoenzymatic synthesis of diazirine-modified CMP-sialic acid (CMP-SiaDAz), followed by sialyltransferase-catalyzed addition of SiaDAz to desialylated cell surfaces. Cell surface SiaDAz-ylation is compatible with multiple cell types and is facilitated by endogenous extracellular sialyltransferase activity present in Daudi B cells. This method for extracellular addition of α2-6-linked SiaDAz enables UV-induced crosslinking of CD22, demonstrating the utility for covalent capture of glycan-mediated binding interactions.


Author(s):  
Ritesh Tandon ◽  
Joshua S. Sharp ◽  
Fuming Zhang ◽  
Vitor H. Pomin ◽  
Nicole M. Ashpole ◽  
...  

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has caused a pandemic of historic proportions and continues to spread globally, with enormous consequences to human health. Currently there is no vaccine, effective therapeutic or prophylactic. Like other betacoronaviruses, attachment and entry of SARS-CoV-2 is mediated by the spike glycoprotein (SGP). In addition to its well-documented interaction with its receptor, human angiotensin converting enzyme 2 (hACE2), SGP has been found to bind to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we pseudotyped SARS-CoV-2 SGP on a third generation lentiviral (pLV) vector and tested the impact of various sulfated polysaccharides on transduction efficiency in mammalian cells. The pLV vector pseudotyped SGP efficiently and produced high titers on HEK293T cells. Various sulfated polysaccharides potently neutralized pLV-S pseudotyped virus with clear structure-based differences in anti-viral activity and affinity to SGP. Concentration-response curves showed that pLV-S particles were efficiently neutralized by a range of concentrations of unfractionated heparin (UFH), enoxaparin, 6-O-desulfated UFH and 6-O-desulfated enoxaparin with an IC50 of 5.99 μg/L, 1.08 mg/L, 1.77 μg/L, and 5.86 mg/L respectively. In summary, several sulfated polysaccharides show potent anti-SARS-CoV-2 activity and can be developed for prophylactic as well as therapeutic purposes. Importance The recent emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) in Wuhan, China in late 2019 and its subsequent spread to the rest of the world has created a pandemic situation unprecedented in modern history. While ACE2 has been identified as the viral receptor, cellular polysaccharides have also been implicated in virus entry. The SARS-CoV-2 spike glycoprotein (SGP) binds to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we report structure-based differences in anti-viral activity and affinity to SGP for several sulfated polysaccharides, including both well-characterized FDA-approved drugs and novel marine sulfated polysaccharides, which can be developed for prophylactic as well as therapeutic purposes.


Biochemistry ◽  
1991 ◽  
Vol 30 (27) ◽  
pp. 6636-6645 ◽  
Author(s):  
Mark L. Brader ◽  
Niels C. Kaarsholm ◽  
Robert W. K. Lee ◽  
Michael F. Dunn

Sign in / Sign up

Export Citation Format

Share Document