The dynamical system scaling analysis for single-phase integral test facilities

2022 ◽  
Vol 165 ◽  
pp. 108682
Author(s):  
Zihan Liu ◽  
Yun Guo ◽  
Hui Bao ◽  
Changhong Peng ◽  
Jianchao Lu
Kerntechnik ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. 178-180
Author(s):  
P. Ju ◽  
B. Long ◽  
L. Li ◽  
Q. Su ◽  
X. Wu ◽  
...  

Author(s):  
Cheng-Cheng Deng ◽  
Hua-Jian Chang ◽  
Ben-Ke Qin ◽  
Han Wang ◽  
Lian Chen

During small break loss of coolant accident (SBLOCA) of AP1000 nuclear plant, the behavior of pressurizer surge line has an important effect on the operation of ADS valves and the initial injection of IRWST, which may happen at a time when the reactor core reaches its minimum inventory. Therefore, scaling analysis of the PRZ surge line in nuclear plant integral test facilities is important. Four scaling criteria of surge line are developed, which respectively focus on two-phase flow pattern transitions, counter-current flow limitation (CCFL) behavior, periodic draining and filling and maintaining system inventory. The relationship between the four scaling criteria is discussed and comparative analysis of various scaling results is performed for different length scale ratios of test facilities. The results show that CCFL phenomenon and periodic draining and filling behavior are relatively more important processes and the surge line diameter ratios obtained by the two processes’ scaling criteria are close to each other. Thus, an optimal scaling analysis considering both CCFL phenomenon and periodic draining and filling process of PRZ surge line is given, which is used to provide a practical reference to choose appropriate scale of the surge line for the ACME (Advanced Core-cooling Mechanism Experiment) test facility now being built in China.


2020 ◽  
Author(s):  
Annalisa Iuorio ◽  
Frits Veerman

AbstractPlant autotoxicity has proved to play an essential role in the behaviour of local vegetation. We analyse a reaction-diffusion-ODE model describing the interactions between vegetation, water, and autotoxicity. The presence of autotoxicity is seen to induce movement and deformation of spot patterns in some parameter regimes, a phenomenon which does not occur in classical biomass-water models. We aim to analytically quantify this novel feature, by studying travelling wave solutions in one spatial dimension. We use geometric singular perturbation theory to prove the existence of symmetric, stationary and non-symmetric, travelling pulse solutions, by constructing appropriate homoclinic orbits in the associated 5-dimensional dynamical system. In the singularly perturbed context, we perform an extensive scaling analysis of the dynamical system, identifying multiple asymptotic scaling regimes where (travelling) pulses may or may not be constructed. We discuss the agreement and discrepancy between the analytical results and numerical simulations. Our findings indicate how the inclusion of an additional ODE may significantly influence the properties of classical biomass-water models of Klausmeier/Gray–Scott type.


2021 ◽  
Vol 373 ◽  
pp. 111035
Author(s):  
Ji Xing ◽  
Zhuo Liu ◽  
Weimin Ma ◽  
Yidan Yuan ◽  
Zhongning Sun ◽  
...  

2004 ◽  
Vol 405 (3-4) ◽  
pp. 253-259 ◽  
Author(s):  
S.L. Liu ◽  
G.J. Wu ◽  
X.B. Xu ◽  
J. Wu ◽  
H.M. Shao

Author(s):  
Dong Liu ◽  
Leyuan Yu

Nanofluids have been proposed as a promising candidate for advanced heat transfer fluids in a variety of important engineering applications. A consensus is now lacking on if and how the dispersed nanoparticles alter the thermal transport in convective flows. An experimental investigation was conducted to study single-phase forced convection of Al2O3-water nanofluid in a circular minichannel. The friction factor and convection heat transfer coefficients were measured for nanofluids of various volume concentrations (up to 5%) and were compared to these of the base fluid. The Reynolds number varied from 600 to 4500, covering the laminar, transition and early fully developed turbulent regions. It was found that the nanofluids exhibit pronounced entrance region behaviors in the laminar region. In the transition and turbulent regions, the onset of transition to turbulence is delayed in nanofluids. Further, both the friction factor and convective heat transfer coefficient are below these of water at the same Re in the transition flow. Once fully developed turbulence is established, the difference in the flow and heat transfer of nanofluids and water will diminish. A scaling analysis showed these behaviors may be attributed to the variation in the relative size of nanoparticle with respect to the turbulent microscales. This work suggests that the particle-fluid interaction has a significant impact on the flow physics of nanofluids, especially in the transition and turbulent regions. Consequently, nanofluids should be used in either the laminar flow or fully developed turbulent flow at sufficiently high Re in order to yield enhanced heat transfer performance.


Sign in / Sign up

Export Citation Format

Share Document