circulation flow
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 46)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 5 (1(113)) ◽  
pp. 51-61
Author(s):  
Yuriy Naumenko ◽  
Kateryna Deineka ◽  
Tamara Myronenko

This paper reports the assessment of the influence of dynamic motion parameters on the formation and disappearance at the cylindrical surface of the chamber of the rotating drum of the near-wall layer of non-loose granular fill. Based on the results of experimental visualization of the flow, the effect of solidity on the behavior of granular fill was revealed. The hydrodynamic effect of fill quasi-liquefaction under the action of solidity has been established, which involves the occurrence of a connecting interaction between adjacent layers and the surface of the chamber. Conversion of shear circulation flow to homogeneous dense clustered stream with slipping and rolling without relative movement of particles was detected. The hydrodynamic characteristics of circulation flow transition to the near-wall layer mode during rotation acceleration have been defined. Such a transition is implemented by smoothly increasing the thickness of the layer when the rest of the fill is circulated at the bottom of the chamber. The effect of the rheological hysteresis of the movement of the rotating chamber fill, caused by quasi-liquefaction of non-loose granular environment, has been established. The effect implies exceeding the speed limit ωfl in the formation of a near-wall layer, at rotation acceleration, above the boundary ωdl of the layer disappearance when the rotation slows down. The manifestation of hysteresis mainly increases with an increase in Reynolds number. The intensity of increased hysteresis manifestation increases with a decrease in the degree of filling the chamber. The value of the Froud number for the ωfl and ωdl boundaries increases with the increase in Re. It has been established that at the relative particle size of the dispersed fill ψdc≈(0.065–1.04)·10‑3 and Re=30–500, Fr=1–2.9, for the ωfl boundary, and Fr=0.5–1.4, for the ωdl boundary. The Fr value for the ωfl limit was found to exceed this value for the ωdl boundary by 1.6–2.1 times. The established effects make it possible to substantiate the rational parameters for the grinding process in drum-roll mills


2021 ◽  
Author(s):  
Takeaki Ube ◽  
Tetsuaki Takeda

Abstract A depressurization accident involving the rupture of the primary cooling pipe of the Gas Turbine High Temperature Reactor 300 cogeneration (GTHTR300C), which is a very-high-temperature reactor, is a design-based accident. When the primary pipe connected horizontally to the side of the reactor pressure vessel of GTHTR300C ruptures, molecular diffusion and local natural convection facilitate gas mixing, in addition to air ingress by counter flow. Furthermore, it is expected that a natural circulation flow around the furnace will suddenly occur. To improve the safety of GTHTR300C, an experiment was conducted using an experimental apparatus simulating the flow path configuration of GTHTR300C to investigate the mixing process of a two-component gas of helium and air. The experimental apparatus consisted of a coaxial double cylinder and a coaxial horizontal double pipe. Ball valves were connected to a horizontal inner pipe and outer pipe, and the valves were opened to simulate damage to the main pipe. As a result, it was confirmed that a stable air and helium density stratification formed in the experimental apparatus, and then a natural circulation flow was generated around the inside of the reactor.


2021 ◽  
Vol 380 ◽  
pp. 111293
Author(s):  
Shunsuke Yoshimura ◽  
Takuma Yamaguchi ◽  
Keisuke Ino ◽  
Masahiro Furuya ◽  
Shinichi Morooka

2021 ◽  
Vol 158 ◽  
pp. 108266
Author(s):  
Xianbing Chen ◽  
Huafeng Li ◽  
ChunGuo Wang ◽  
Chengyi Long ◽  
Puzhen Gao

Author(s):  
Andrey Yu. Zubarev ◽  
Dmitry Chirikov ◽  
Anton Musikhin ◽  
Maxime Raboisson-Michel ◽  
Gregory Verger-Dubois ◽  
...  

We present results of theoretical modelling of macroscopic circulating flow induced in a cloud of ferrofluid by an oscillating magnetic field. The cloud is placed in a cylindrical channel filled by a nonmagnetic liquid. The aim of this work is the development of a scientific basis for a progressive method of addressing drug delivery to thrombus clots in blood vessels with the help of the magnetically induced circulation flow. Our results show that the oscillating field can induce, inside and near the cloud, specific circulating flows with the velocity amplitude about several millimetres per second. These flows can significantly increase the rate of transport of the molecular non-magnetic impurity in the channel. This article is part of the theme issue ‘Transport phenomena in complex systems (part 1)’.


2021 ◽  
Author(s):  
Kun Cheng ◽  
RONG CAI ◽  
Peiyao Qi ◽  
Bingzheng Ke ◽  
deng jian ◽  
...  

JOM ◽  
2021 ◽  
Author(s):  
Yadong Xiao ◽  
Tingting Lu ◽  
Yugao Zhou ◽  
Qiuqiong Su ◽  
Liangzhao Mu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document