scholarly journals The Higgs sector of gravitational gauge theories

2006 ◽  
Vol 321 (3) ◽  
pp. 708-743 ◽  
Author(s):  
M. Leclerc
Keyword(s):  
Author(s):  
Thomas DeGrand

I give an elementary introduction to the study of gauge theories coupled to fermions with many degrees of freedom. Besides their intrinsic interest, these theories are candidates for non-perturbative extensions of the Higgs sector of the standard model. While related to quantum chromodynamics, these systems can exhibit very different behaviour from it: they can possess a running gauge coupling with an infrared-attractive fixed point. I briefly survey recent lattice work in this area.


2018 ◽  
Vol 175 ◽  
pp. 08002 ◽  
Author(s):  
Pascal Törek ◽  
Axel Maas ◽  
René Sondenheimer

In gauge theories, the physical, experimentally observable spectrum consists only of gauge-invariant states. In the standard model the Fröhlich-Morchio-Strocchi mechanism shows that these states can be adequately mapped to the gauge-dependent elementary W, Z, Higgs, and fermions. In theories with a more general gauge group and Higgs sector, appearing in various extensions of the standard model, this has not to be the case. In this work we determine analytically the physical spectrum of SU(N > 2) gauge theories with a Higgs field in the fundamental representation. We show that discrepancies between the spectrum predicted by perturbation theory and the observable physical spectrum arise. We confirm these analytic findings with lattice simulations for N = 3.


Author(s):  
Laurent Baulieu ◽  
John Iliopoulos ◽  
Roland Sénéor

A geometrical derivation of Abelian and non- Abelian gauge theories. The Faddeev–Popov quantisation. BRST invariance and ghost fields. General discussion of BRST symmetry. Application to Yang–Mills theories and general relativity. A brief history of gauge theories.


1980 ◽  
Vol 21 (10) ◽  
pp. 2848-2858 ◽  
Author(s):  
Kazuo Fujikawa
Keyword(s):  

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Neelima Agarwal ◽  
Lorenzo Magnea ◽  
Sourav Pal ◽  
Anurag Tripathi

Abstract Correlators of Wilson-line operators in non-abelian gauge theories are known to exponentiate, and their logarithms can be organised in terms of collections of Feynman diagrams called webs. In [1] we introduced the concept of Cweb, or correlator web, which is a set of skeleton diagrams built with connected gluon correlators, and we computed the mixing matrices for all Cwebs connecting four or five Wilson lines at four loops. Here we complete the evaluation of four-loop mixing matrices, presenting the results for all Cwebs connecting two and three Wilson lines. We observe that the conjuctured column sum rule is obeyed by all the mixing matrices that appear at four-loops. We also show how low-dimensional mixing matrices can be uniquely determined from their known combinatorial properties, and provide some all-order results for selected classes of mixing matrices. Our results complete the required colour building blocks for the calculation of the soft anomalous dimension matrix at four-loop order.


Sign in / Sign up

Export Citation Format

Share Document