anomalous dimension
Recently Published Documents


TOTAL DOCUMENTS

279
(FIVE YEARS 39)

H-INDEX

41
(FIVE YEARS 5)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
M. Beccaria ◽  
S. Giombi ◽  
A. A. Tseytlin

Abstract Extending earlier work, we find the two-loop term in the beta-function for the scalar coupling ζ in a generalized Wilson loop operator of the $$ \mathcal{N} $$ N = 4 SYM theory, working in the planar weak-coupling expansion. The beta-function for ζ has fixed points at ζ = ±1 and ζ = 0, corresponding respectively to the supersymmetric Wilson-Maldacena loop and to the standard Wilson loop without scalar coupling. As a consequence of our result for the beta-function, we obtain a prediction for the two-loop term in the anomalous dimension of the scalar field inserted on the standard Wilson loop. We also find a subset of higher-loop contributions (with highest powers of ζ at each order in ‘t Hooft coupling λ) coming from the scalar ladder graphs determining the corresponding terms in the five-loop beta-function. We discuss the related structure of the circular Wilson loop expectation value commenting, in particular, on consistency with a 1d defect version of the F-theorem. We also compute (to two loops in the planar ladder model approximation) the two-point correlators of scalars inserted on the Wilson line.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Einan Gardi ◽  
Mark Harley ◽  
Rebecca Lodin ◽  
Martina Palusa ◽  
Jennifer M. Smillie ◽  
...  

Abstract Webs are sets of Feynman diagrams which manifest soft gluon exponentiation in gauge theory scattering amplitudes: individual webs contribute to the logarithm of the amplitude and their ultraviolet renormalization encodes its infrared structure. In this paper, we consider the particular class of boomerang webs, consisting of multiple gluon exchanges, but where at least one gluon has both of its endpoints on the same Wilson line. First, we use the replica trick to prove that diagrams involving self-energy insertions along the Wilson line do not contribute to the web, i.e. their exponentiated colour factor vanishes. Consequently boomerang webs effectively involve only integrals where boomerang gluons straddle one or more gluons that connect to other Wilson lines. Next we classify and calculate all boomerang webs involving semi-infinite non-lightlike Wilson lines up to three-loop order, including a detailed discussion of how to regulate and renormalize them. Furthermore, we show that they can be written using a basis of specific harmonic polylogarithms, that has been conjectured to be sufficient for expressing all multiple gluon exchange webs. However, boomerang webs differ from other gluon-exchange webs by featuring a lower and non-uniform transcendental weight. We cross-check our results by showing how certain boomerang webs can be determined by the so-called collinear reduction of previously calculated webs. Our results are a necessary ingredient of the soft anomalous dimension for non-lightlike Wilson lines at three loops.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Weiguang Cao ◽  
Franz Herzog ◽  
Tom Melia ◽  
Jasper Roosmale Nepveu

Abstract We renormalize massless scalar effective field theories (EFTs) to higher loop orders and higher orders in the EFT expansion. To facilitate EFT calculations with the R* renormalization method, we construct suitable operator bases using Hilbert series and related ideas in commutative algebra and conformal representation theory, including their novel application to off-shell correlation functions. We obtain new results ranging from full one loop at mass dimension twelve to five loops at mass dimension six. We explore the structure of the anomalous dimension matrix with an emphasis on its zeros, and investigate the effects of conformal and orthonormal operators. For the real scalar, the zeros can be explained by a ‘non-renormalization’ rule recently derived by Bern et al. For the complex scalar we find two new selection rules for mixing n- and (n− 2)-field operators, with n the maximal number of fields at a fixed mass dimension. The first appears only when the (n− 2)-field operator is conformal primary, and is valid at one loop. The second appears in more generic bases, and is valid at three loops. Finally, we comment on how the Hilbert series we construct may be used to provide a systematic enumeration of a class of evanescent operators that appear at a particular mass dimension in the scalar EFT.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
S. Metayer ◽  
S. Teber

Abstract We consider reduced quantum electrodynamics ($$ {\mathrm{RQED}}_{d_{\gamma },{d}_e} $$ RQED d γ , d e ) a model describing fermions in a de-dimensional space-time and interacting via the exchange of massless bosons in dγ-dimensions (de ≤ dγ). We compute the two-loop mass anomalous dimension, γm, in general $$ {\mathrm{RQED}}_{4,{d}_e} $$ RQED 4 , d e with applications to RQED4,3 and QED4. We then proceed on studying dynamical (parity-even) fermion mass generation in $$ {\mathrm{RQED}}_{4,{d}_e} $$ RQED 4 , d e by constructing a fully gauge-invariant gap equation for $$ {\mathrm{RQED}}_{4,{d}_e} $$ RQED 4 , d e with γm as the only input. This equation allows for a straightforward analytic computation of the gauge-invariant critical coupling constant, αc, which is such that a dynamical mass is generated for αr> αc, where αr is the renormalized coupling constant, as well as the gauge-invariant critical number of fermion flavours, Nc, which is such that αc → ∞ and a dynamical mass is generated for N < Nc. For RQED4,3, our results are in perfect agreement with the more elaborate analysis based on the resolution of truncated Schwinger-Dyson equations at two-loop order. In the case of QED4, our analytical results (that use state of the art five-loop expression for γm) are in good quantitative agreement with those obtained from numerical approaches.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Joachim Brod ◽  
Emmanuel Stamou

Abstract Electric dipole moments are sensitive probes of new phases in the Higgs Yukawa couplings. We calculate the complete two-loop QCD anomalous dimension matrix for the mixing of CP-odd scalar and tensor operators and apply our results for a phenomenological study of CP violation in the bottom and charm Yukawa couplings. We find large shifts of the induced Wilson coefficients at next-to-leading-logarithmic order. Using the experimental bound on the electric dipole moments of the neutron and mercury, we update the constraints on CP-violating phases in the bottom and charm quark Yukawas.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Hernán A. González ◽  
Francisco Rojas

Abstract The all-loop resummation of SU(N) gauge theory amplitudes is known to factorize into an IR-divergent (soft and collinear) factor and a finite (hard) piece. The divergent factor is universal, whereas the hard function is a process-dependent quantity.We prove that this factorization persists for the corresponding celestial amplitudes. Moreover, the soft/collinear factor becomes a scalar correlator of the product of renormalized Wilson lines defined in terms of celestial data. Their effect on the hard amplitude is a shift in the scaling dimensions by an infinite amount, proportional to the cusp anomalous dimension. This leads us to conclude that the celestial-IR-safe gluon amplitude corresponds to a expectation value of operators dressed with Wilson line primaries. These results hold for finite N.In the large N limit, we show that the soft/collinear correlator can be described in terms of vertex operators in a Coulomb gas of colored scalar primaries with nearest neighbor interactions. In the particular cases of four and five gluons in planar $$ \mathcal{N} $$ N = 4 SYM theory, where the hard factor is known to exponentiate, we establish that the Mellin transform converges in the UV thanks to the fact that the cusp anomalous dimension is a positive quantity. In other words, the very existence of the full celestial amplitude is owed to the positivity of the cusp anomalous dimension.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
M. Laine

Abstract Studying the diffusion and kinetic equilibration of heavy quarks within a hot QCD medium profits from the knowledge of a coloured Lorentz force that acts on them. Starting from the spatial components of the vector current, and carrying out two matching computations, one for the heavy quark mass scale (M) and another for thermal scales $$ \left(\sqrt{MT},T\right) $$ MT T , we determine 1-loop matching coefficients for the electric and magnetic parts of a Lorentz force. The magnetic part has a non-zero anomalous dimension, which agrees with that extracted from two other considerations, one thermal and the other in vacuum. The matching coefficient could enable a lattice study of a colour-magnetic 2-point correlator.


Sign in / Sign up

Export Citation Format

Share Document