Efficiency of room acoustic simulations with time-domain FEM including frequency-dependent absorbing boundary conditions: Comparison with frequency-domain FEM

2021 ◽  
Vol 182 ◽  
pp. 108212
Author(s):  
Takeshi Okuzono ◽  
Takumi Yoshida ◽  
Kimihiro Sakagami
2019 ◽  
Vol 16 (4) ◽  
pp. 690-706
Author(s):  
Zhencong Zhao ◽  
Jingyi Chen ◽  
Xiaobo Liu ◽  
Baorui Chen

Abstract The frequency-domain seismic modeling has advantages over the time-domain modeling, including the efficient implementation of multiple sources and straightforward extension for adding attenuation factors. One of the most persistent challenges in the frequency domain as well as in the time domain is how to effectively suppress the unwanted seismic reflections from the truncated boundaries of the model. Here, we propose a 2D frequency-domain finite-difference wavefield simulation in elastic media with hybrid absorbing boundary conditions, which combine the perfectly matched layer (PML) boundary condition with the Clayton absorbing boundary conditions (first and second orders). The PML boundary condition is implemented in the damping zones of the model, while the Clayton absorbing boundary conditions are applied to the outer boundaries of the damping zones. To improve the absorbing performance of the hybrid absorbing boundary conditions in the frequency domain, we apply the complex coordinate stretching method to the spatial partial derivatives in the Clayton absorbing boundary conditions. To testify the validity of our proposed algorithm, we compare the calculated seismograms with an analytical solution. Numerical tests show the hybrid absorbing boundary condition (PML plus the stretched second-order Clayton absorbing condition) has the best absorbing performance over the other absorbing boundary conditions. In the model tests, we also successfully apply the complex coordinate stretching method to the free surface boundary condition when simulating seismic wave propagation in elastic media with a free surface.


2021 ◽  
Vol 8 ◽  
pp. 57-68
Author(s):  
R.Yu. Borodulin ◽  
N.O. Lukyanov

Problem statement. The accuracy and convergence of calculations for solving problems of electrodynamics by the finite difference method in the time domain significantly depends on the correct choice of parameters and the correct setting of the absorbing boundary conditions (ABC). Two main types of absorbing boundary conditions are known: Mur ABC; Beranger ABC. It is believed that the Mur ABC is less effective at absorbing spherical waves than the Beranger ABC, but they do not require the introduction of additional parameters (the so-called "Beranger fields"), which simplifies the implementation of program code and saves computer RAM. Calculations have shown that the efficiency of the Mur ABC will depend on their thickness. On the one hand, an increase in the thickness of the ABC layers will lead to an increase in the accuracy of calculations, on the other hand, to an increase in the size of the calculation area and, as a result, an increase in RAM. The problem arises of determining the criterion for evaluating the efficiency of ABC to determine their optimal thickness. Goal. Identification of new factors that make it possible to use the Mur ABC as efficiently as the Beranger ABC, while significantly saving computer resources. Result. The expressions for the ABC are presented, taking into account the interaction of all components of the electromagnetic field within a single cell of the FDTD. Calculations of the reflection coefficient – a criterion for evaluating the efficiency of the ABC, are presented. Practical significance. Calculations are presented that allow automating the selection of ABC parameters for their stable operation in solving electrodynamic problems.


Sign in / Sign up

Export Citation Format

Share Document