Cam-follower mechanism for airborne ultrasound generation

2021 ◽  
Vol 182 ◽  
pp. 108225
Author(s):  
Philippe Danakas ◽  
Maxime Bilodeau ◽  
Nicolas Quaegebeur
Wear ◽  
2003 ◽  
Vol 254 (11) ◽  
pp. 1199-1207 ◽  
Author(s):  
Per Lindholm ◽  
Stefan Björklund ◽  
Miguel Calvo Cortes
Keyword(s):  

2003 ◽  
Vol 125 (3) ◽  
pp. 593-601 ◽  
Author(s):  
B. Demeulenaere ◽  
J. De Schutter

Traditionally, cam-follower systems are designed by assuming a constant camshaft speed. Nevertheless, all cam-follower systems, especially high-speed systems, exhibit some camshaft speed fluctuation (despite the presence of a flywheel) which causes the follower motions to be inaccurate. This paper therefore proposes a novel design procedure that explicitly takes into account the camshaft speed variation. The design procedure assumes that (i) the cam-follower system is conservative and (ii) all forces are inertial. The design procedure is based on a single design choice, i.e., the amount of camshaft speed variation, and yields (i) cams that compensate for the inertial dynamics for any period of motion and (ii) a camshaft flywheel whose (small) inertia is independent of the period of motion. A design example shows that the cams designed in this way offer the following advantages, even for non-conservative, non-purely inertial cam-follower systems: (i) more accurate camshaft motion despite a smaller flywheel, (ii) lower motor torques, (iii) more accurate follower motions, with fewer undesired harmonics, and (iv) a camshaft motion spectrum that is easily and robustly predictable.


Wear ◽  
2006 ◽  
Vol 260 (1-2) ◽  
pp. 181-192 ◽  
Author(s):  
Nagaraj Nayak ◽  
P.A. Lakshminarayanan ◽  
M.K. Gajendra Babu ◽  
A.D. Dani
Keyword(s):  

2014 ◽  
Vol 21 (6) ◽  
pp. 2144-2150 ◽  
Author(s):  
Svenja M. Beck ◽  
Henry Sabarez ◽  
Volker Gaukel ◽  
Kai Knoerzer

2005 ◽  
Vol 127 (3) ◽  
pp. 415-423 ◽  
Author(s):  
C.-P. Teng ◽  
J. Angeles

Methods of structural optimization have been studied and developed over the last three decades. An important aspect of structural optimization pertains to the condition under which the loads are applied. Most machine structures in operation are subject to loads varying as functions of time. In this paper, a novel approach is proposed to cope with loads whose magnitudes vary within given bounds and with variable directions. The underlying ideas are applied to the structural optimization of the roller-carrying disk of a novel class of cam-follower speed reduction devices termed Speed-o-Cam (SoC). Results obtained in this paper are compared with a current prototype and with an intermediate design in which the dimensions of the roller pins are optimized. Combined with the optimum dimension of the roller pins, our structural-optimization results lead to an improvement of almost twice the stiffness with a mass reduction of 40% of the original prototype.


Author(s):  
Holly K. Ault ◽  
James C. Wilkinson

Abstract A method for the integrated design and manufacture of radial plate cams is discussed. Currently, a cam-follower system is designed by specifying constraints on the motion of the follower. The physical cam contour or cam pitch curve are not mathematically defined. The cam is manufactured from the discretized follower motion program. A new method for cam design is proposed which will produce a smooth, mathematically defined cam pitch curve while maintaining the proper constraints on the follower motion. Piecewise polynomial functions in the form of rational and/or non-rational splines may be used. Cams will be manufactured using smoothed profiles and tested for improved dynamic performance. The results of initial investigations of cam profile design for this research are presented.


Author(s):  
Arata Jingu ◽  
Masahiro Fujiwara ◽  
Yasutoshi Makino ◽  
Hiroyuki Shinoda

2021 ◽  
pp. 1-24
Author(s):  
Seung Guk Baek ◽  
Hyungpil Moon ◽  
Hyouk Ryeol Choi ◽  
Ja Choon Koo

Abstract Humans come into physical contacts with various machines such as robots in daily life. This leads to the underlying issue of guaranteeing safety during such human-robot interactions. Thus, many devices and methods have been studied for impact damage reduction. A safety joint mechanism (SJM) using four-bar linkages has been highlighted as an impact cutoff device owing to its capabilities of nonlinear load transfer. This paper focuses on a new design and testing for a kinematic element of an SJM based on four-bar linkages to improve the impact cutoff performances. In the present work, a set of variable-length floating link designs is proposed, and the mechanism is implemented by mechanical contact surface profile shaping between the cams and followers. The performance of the cam-follower mechanism is evaluated depending on the variable length of the floating link, by using equivalent stiffness method, which successfully quantifies the performance of the proposed mechanism. Based on this design and analysis, two SJMs having symmetrical arrangements for four numbers of cam-follower mechanisms are fabricated: one SJM has fixed-length floating links and the other has variable-length floating links. The effect of the new kinematic elements on the performance improvement is verified by comparing the absorbed impact rates of the two SJMs by impact hammer-like drop tests. Consequently, it is confirmed that the rapid length change of the floating link is the core element for improving the performance of the safety mechanism.


Sign in / Sign up

Export Citation Format

Share Document