scholarly journals Numerical investigations about the sound transmission loss of a fuselage panel section with embedded periodic foams

2021 ◽  
Vol 182 ◽  
pp. 108265
Author(s):  
Dario Magliacano ◽  
Giuseppe Petrone ◽  
Francesco Franco ◽  
Sergio De Rosa
2021 ◽  
Vol 263 (1) ◽  
pp. 5382-5390
Author(s):  
Denilson Ramos ◽  
Luís Godinho ◽  
Paulo Amado-Mendes ◽  
Paulo Mareze

Understanding urban noise as a serious environmental problem in urban centers, the development and application of noise control strategies have demanded a recent effort by several researches. In this case, the development of acoustic metamaterial artificially designed to manipulate the wave phenomena has become a recent topic, aiming at optimized responses, and enables the development of subwavelength devices with potential application in passive ventilation and noise mitigation, providing better environmental conditions in buildings. The present paper intends to contribute to the knowledge in this field by investigating the concept of an acoustic metamaterial with negative bulk modulus based in a parallel arrangement of Helmholtz Resonators. Experimental and numerical investigations are carried out to determine the acoustic potential of the proposed meta structure in terms of sound absorption and sound transmission loss. The developed concept exhibits significant benefits in the properties of sound transmission loss, and seems a potential application for noise control at specific frequency bands (mainly at low to middle frequency) in building façades.


2020 ◽  
Vol 37 ◽  
pp. 126-133
Author(s):  
Yuan-Wei Li ◽  
Chao-Nan Wang

Abstract The purpose of this study was to investigate the sound insulation of double-leaf panels. In practice, double-leaf panels require a stud between two surface panels. To simplify the analysis, a stud was modeled as a spring and mass. Studies have indicated that the stiffness of the equivalent spring is not a constant and varies with the frequency of sound. Therefore, a frequency-dependent stiffness curve was used to model the effect of the stud to analyze the sound insulation of a double-leaf panel. First, the sound transmission loss of a panel reported by Halliwell was used to fit the results of this study to determine the stiffness of the distribution curve. With this stiffness distribution of steel stud, some previous proposed panels are also analyzed and are compared to the experimental results in the literature. The agreement is good. Finally, the effects of parameters, such as the thickness and density of the panel, thickness of the stud and spacing of the stud, on the sound insulation of double-leaf panels were analyzed.


Sign in / Sign up

Export Citation Format

Share Document