Simulation of a combined heating, cooling and domestic hot water system based on ground source absorption heat pump

2014 ◽  
Vol 126 ◽  
pp. 113-122 ◽  
Author(s):  
Wei Wu ◽  
Tian You ◽  
Baolong Wang ◽  
Wenxing Shi ◽  
Xianting Li
2015 ◽  
Vol 75 ◽  
pp. 1242-1248 ◽  
Author(s):  
Zhang Qunli ◽  
Cao Mingkai ◽  
Zhang Qiuyue ◽  
Di Hongfa

Author(s):  
Wessam El-Baz ◽  
Peter Tzscheutschler ◽  
Ulrich Wagner

There is a continuous growth of heat pump installations in residential buildings in Germany. The heat pumps were not only used for space heating and domestic hot water consumption but also to offer flexibility to the grid. the high coefficient of performance and the low cost of heat storages made the heat pumps an optimal candidate for the power to heat applications. Thus, several questions are raised about the optimal integration and control of the heat pump system with buffer storages to maximize its operation efficiency and minimize the operation costs. In this paper, an experimental investigation is performed to study the performance of a ground source heat pump (GSHP) with a combi-storage under several configurations and control factors. The experiments were performed on an innovative modular testbed that is capable of emulating a ground source to provide the heat pump with different temperature levels at different times of the day. Moreover, it can emulate the different building loads such as the space heating load and the domestic hot water consumption in real-time. The data gathered from the testbed and different experimental studies were used to develop a simulation model based on Modelica that can accurately simulate the dynamics of a GSHP in a building. The model was validated based on different metrics. Energetically, the difference between the developed model and the measured values was only 3.08\% and 4.18\% for the heat generation and electricity consumption, respectively.


2012 ◽  
Vol 48 ◽  
pp. 317-324 ◽  
Author(s):  
Xianting Li ◽  
Wei Wu ◽  
Xiaoling Zhang ◽  
Wenxing Shi ◽  
Baolong Wang

Author(s):  
Jere Knuutinen ◽  
Herman Böök ◽  
Vesa Ruuskanen ◽  
Antti KosonenVesa Ruuskanen ◽  
Paula Immonen ◽  
...  

2013 ◽  
Vol 671-674 ◽  
pp. 2122-2125
Author(s):  
Qi Wang ◽  
Qiang Wang ◽  
Xiao Yang Hui ◽  
Zhi Jun Shi

Composition and operating modes of two different solar-assisted heat pump systems have been introduced in this paper. The advantages of compound heat pump system are analyzed compared with solo heat pump system. Solar-assisted air source heat pump system not only has the advantages, which air source heat pump system (ASHP) has, but also makes good use of renewable solar energy. It can provide cooling, heating and living hot water all the year. Solar-assisted ground source heat pump system realizes advantage complementation in various seasons between solar heat water system and ground source heat pump (GSHP) system. Solar-assisted ground source heat pump system can adjust the system operating model to solve the disadvantage of sole GSHP system, whose performance decrease for the temperature change of soil for long time operating with annual cool and heat unbalancedness. GSHP system can effectively increase the operating stability with the assistance of solar energy.


Sign in / Sign up

Export Citation Format

Share Document