Energy saving potential of low temperature hot water system based on air source absorption heat pump

2012 ◽  
Vol 48 ◽  
pp. 317-324 ◽  
Author(s):  
Xianting Li ◽  
Wei Wu ◽  
Xiaoling Zhang ◽  
Wenxing Shi ◽  
Baolong Wang
2014 ◽  
Vol 126 ◽  
pp. 113-122 ◽  
Author(s):  
Wei Wu ◽  
Tian You ◽  
Baolong Wang ◽  
Wenxing Shi ◽  
Xianting Li

Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4313 ◽  
Author(s):  
Boahen ◽  
Choi

The use of cascade heat pumps for hot water generation has gained much attention in recent times. The big question that has attracted much research interest is how to enhance the performance and energy saving potential of these cascade heat pumps. This study therefore proposed a new cycle to enhance performance of the cascade heat pump by adopting an auxiliary heat exchanger (AHX) in desuperheater, heater and parallel positions at the low stage (LS) side. The new cascade cycle with AHX in desuperheater position was found to have better performance than that with AHX at heater and parallel positions. Compared to the conventional cycle, heating capacity and coefficient of performance (COP) of the new cascade cycle with AHX in desuperheater position increased up to 7.4% and 14.9% respectively.


2014 ◽  
Vol 700 ◽  
pp. 189-192
Author(s):  
Rui Hua Ma

Air source heat pump hot water system is a kind of high efficient energy saving technology model, and it has no pollution to the environment. In this paper, a bathroom of one college in Panzhihua area is researched as a project example, and the working principle of air source heat pump hot water system is introduced, furthermore, the system benefit is analyzed. The result proves the air source heat pump hot water system has good economic benefits, energy saving and environmental protection benefits, and it has a broad development space and application prospect in building energy saving.


Solar Energy ◽  
2005 ◽  
Author(s):  
Ronghua Wu ◽  
Chenghu Zhang ◽  
Dexing Sun

The integrated low and high temperature heating water system consists of heat pump heat source and boiler heat source. The heat pump heat source abstract heat from low temperature heat source and produce hot water up to 65°C. During mild weather, the 65°C hot water is sufficient for building heating. During cold weather conditions, the boiler heat source will have to be used to produce hot water at 90°C or higher to satisfy the building comfort. To improve the system economy, the integrated system has to maximize the use of the low temperature heat source since it is free. This paper presents a theoretical models and analysis to optimize the system design parameters.


HortScience ◽  
1994 ◽  
Vol 29 (4) ◽  
pp. 249a-249
Author(s):  
Eric A. Lavoie ◽  
Damien de Halleux ◽  
André Gosselin ◽  
Jean-Claude Dufour

The main objective of this research was to produce a simulated model that permitted the evaluation of operating costs of commercial greenhouse tomato growers with respect to heating methods (hot air, hot water, radiant and heat pumps) and the use of artificial lighting for 1991 and 1992. This research showed that the main factors that negatively influence profitability were energy consumption during cold periods and the price of tomatoes during the summer season. The conventional hot water system consumed less energy than the heat pump system and produced marketable fruit yields similar to those from the heat pump system. The hot water system was generally more profitable in regards to energy consumption and productivity. Moreover, investment costs were less; therefore, this system gives best overall financial savings. As for radiant and hot air systems, their overall financial status falls between that of the hot water system and the heat pump. The radiant system proved to be more energy efficient that the hot air system, but the latter produced a higher marketable fruit yield over the 2-year study.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 954 ◽  
Author(s):  
Hanne Kauko ◽  
Daniel Rohde ◽  
Armin Hafner

District heating enables an economical use of energy sources that would otherwise be wasted to cover the heating demands of buildings in urban areas. For efficient utilization of local waste heat and renewable heat sources, low distribution temperatures are of crucial importance. This study evaluates a local heating network being planned for a new building area in Trondheim, Norway, with waste heat available from a nearby ice skating rink. Two alternative supply temperature levels have been evaluated with dynamic simulations: low temperature (40 °C), with direct utilization of waste heat and decentralized domestic hot water (DHW) production using heat pumps; and medium temperature (70 °C), applying a centralized heat pump to lift the temperature of the waste heat. The local network will be connected to the primary district heating network to cover the remaining heat demand. The simulation results show that with a medium temperature supply, the peak power demand is up to three times higher than with a low temperature supply. This results from the fact that the centralized heat pump lifts the temperature for the entire network, including space and DHW heating demands. With a low temperature supply, heat pumps are applied only for DHW production, which enables a low and even electricity demand. On the other hand, with a low temperature supply, the district heating demand is high in the wintertime, in particular if the waste heat temperature is low. The choice of a suitable supply temperature level for a local heating network is hence strongly dependent on the temperature of the available waste heat, but also on the costs and emissions related to the production of district heating and electricity in the different seasons.


Sign in / Sign up

Export Citation Format

Share Document