Adaptive control for robust air flow management in an automotive fuel cell system

2017 ◽  
Vol 190 ◽  
pp. 73-83 ◽  
Author(s):  
Jaeyoung Han ◽  
Sangseok Yu ◽  
Sun Yi
Author(s):  
Janghwan Hwang ◽  
Sangseok Yu

Abstract Efficient hydrogen flow control is of great importance to ensure the reliable operation of an automotive fuel cell system because it is closely associated with the safety and the economic efficiency. In this study, an effective hydrogen flow control algorithm for hydrogen excess ratio control is addressed by pointing out the recovery speed and overshoot response. Unlike previous studies on the hydrogen management systems of an automotive fuel cell, this study presents an analytic hydrogen tank model which can present the characteristics of the discharge and charge of hydrogen from a type 4 hydrogen tank. To this end, a mode reference adaptive control (MRAC) based on proportional-integral (PI) control is introduced, to ensure robust hydrogen flow during the dynamic operation of fuel cell system. The MRAC was compared with the nominal PI control and PWM control in the hydrogen management system of an automotive fuel cell operating within normal conditions, under steady-state responses and transient. Based on these result, it can further demonstrate that the MRAC algorithm shows better recovery speed and tracking performance than the nominal PI, and PWM control algorithm with respect to the transient behaviors.


Author(s):  
Ahmed A. Al-Durra ◽  
Stephen Yurkovich ◽  
Yann Guezennec

To be practical in automotive traction applications, fuel cell systems must provide power output levels of performance that rival that of typical internal combustion engines. In so doing, transient behavior is one of the keys for success of fuel cell systems in vehicles. From a model-based control perspective, regulation of the fuel cell system through transients is critical, where the response of a fuel cell system depends on the air and hydrogen (flow and pressure regulation) and heat and water management. The focus of this paper is on the air/fuel supply subsystem in tracking an optimum variable pressurization and air flow for maximum system efficiency during load transients. The control-oriented model developed for this study considers electrochemistry, thermodynamics, and fluid flow principles for a 13-state, nonlinear model of a pressurized fuel cell system. For control purposes, a model reduction is performed by converting some of the model dynamics to simple algebraic relationships. A single reference input, the power demanded by the user, is utilized to produce a corresponding reference air flow and back-pressure valve opening, after passing through a static calculation and a tabulated map. Because of the complexity of the full nonlinear model (used in simulation as the truth model), where several maps are used rather than functional forms, two different control techniques are examined separately, each using a feedforward component. The first technique uses an observer-based linear optimum control which combines a feed-forward approach based on the steady state plant inverse response, coupled to a multi-variable LQR feedback control. An extension of that approach, for control in the full nonlinear range of operation, leads to the second technique, nonlinear gain-scheduled control.


2022 ◽  
Author(s):  
Waheed B. Bello ◽  
Satya R T Peddada ◽  
Anurag Bhattacharyya ◽  
Mark Jennings ◽  
Sunil Katragadda ◽  
...  

Energy ◽  
2022 ◽  
Vol 238 ◽  
pp. 121949
Author(s):  
Huicui Chen ◽  
Zhao Liu ◽  
Xichen Ye ◽  
Liu Yi ◽  
Sichen Xu ◽  
...  

2008 ◽  
Vol 179 (2) ◽  
pp. 649-659 ◽  
Author(s):  
Junzhi Zhang ◽  
Guidong Liu ◽  
Wensheng Yu ◽  
Minggao Ouyang

Author(s):  
Judith O’Rourke ◽  
Murat Arcak ◽  
Manikandan Ramani

This paper proposes the use of electrochemical impedance spectroscopy (EIS) to estimate the cathode flow rate in a fuel cell system. Through experimental testing of an eight-cell, hydrogen-fueled polymer electrolyte stack, it shows that the ac impedance measurements are highly sensitive to the air flow rates at varying current densities. The ac impedance magnitude at 0.1Hz allows the distinction of air flow rates (stoichiometry of 1.5–3.0) at current densities as low as 0.1A/cm2. Using experimental data and regression analysis, a simple algebraic equation that estimates the air flow rate using impedance measurements at a frequency of 0.1Hz is developed. The derivation of this equation is based on the operating cell voltage equation that accounts for all the irreversibilities.


Sign in / Sign up

Export Citation Format

Share Document