Review of wind power scenario generation methods for optimal operation of renewable energy systems

2020 ◽  
Vol 280 ◽  
pp. 115992
Author(s):  
Jinghua Li ◽  
Jiasheng Zhou ◽  
Bo Chen
Author(s):  
Francisco J. Contreras ◽  
David A. Romero ◽  
Cristina H. Amon

Recently, there has been increased interest in designing stand-alone Hybrid Renewable Energy Systems (HRES) for remote communities. Several methodologies have been proposed to tackle the design optimization problem, to develop strategies for optimal operation/dispatch, or to address both problems concurrently. So far, however, these methods have been developed only for specific communities or system configurations (e.g., wind-diesel; PV-diesel). In this study, we propose a multilevel design optimization method that considers both optimal component selection and dispatch strategy that can be applied to any community regardless of the available renewable resources, thus overcoming the limitations of previous studies. The new approach considers a wide range of renewable and non-renewable energy technologies, a database of commercially available components, and leverages state-of-the-art methods for solving each optimization subproblem. The novel algorithm was evaluated with a set of meteorological conditions that emulate different remote communities. In addition, two pricing scenarios for diesel are studied to explore how the HRES design is influenced by this parameter.


2020 ◽  
Author(s):  
David Burnham ◽  
Jules Campbell ◽  
Surya Santoso ◽  
Arturo Compean ◽  
Jaime Ramos

2021 ◽  
Vol 40 (1) ◽  
pp. 1521-1536
Author(s):  
Jian Yang ◽  
Jihua Han ◽  
Tong Wu ◽  
Hao Zhang ◽  
Lixia Shang

The economic development of any country is closely linked with the consumption of energy. Therefore, international policies encourage increasing penetration of renewable energy sources (RES) into the electrical grid in order to reduce CO2 emissions and cover ever-increasing demands. However, high variance of RES complicates their integration into power systems and complicates their transition from central to distributed energy sources. On the other hand, increasing the penetration of RES in electrical networks stimulates the demand for large capacity for energy storage. This paper presents a new approach to optimize the size of on-grid renewable energy systems integrated to pumped storage system using Salp Swarm Algorithm (SSA). This approach allows the examination of various energy sources and their combination to handle the optimal configuration of the hybrid system. The simulation and optimization process of the studied system have been carried out by MATLAB programming. The impact of the system under study on the grid is examined according to the power exchange values between the system and the grid. Moreover, different scenarios have been introduced for optimal operation. The simulation results indicate that these hybrid systems can reduce power exchange with the grid and ensure that the proposed system is economically and environmentally feasible. Furthermore, the results indicate the technical feasibility of seawater hydroelectric power plants in increasing the capacity of the electric grid to allow for high penetration of RES. Finally, the results showed that the best minimum value of the objective function is 3.9113 and showed that CO2 emission can be reduced about 29.65% per year compared to the conventional power plants.


Sign in / Sign up

Export Citation Format

Share Document