power exchange
Recently Published Documents


TOTAL DOCUMENTS

368
(FIVE YEARS 154)

H-INDEX

16
(FIVE YEARS 6)

Author(s):  
Aleksandr A. Lytaev ◽  
Igor Yu. Popov

The paper is devoted to simulation of interactions in the system of two symmetrical slab optical waveguides, that guide exactly two guided modes with the aim to use the directional coupler as a switcher for CNOT gate in the waveguide model of quantum-like computations. The coupling mode theory is used to solve the system of Maxwell equations. The asymptotic analysis is applied to simplify the system of differential equations, so an approximate analytic solution can be found. The solution obtained is used for the quick directional coupler parameters adjusting algorithm, so the power exchange in the system occurs as that of correctly working CNOT-gate switcher. Moreover, the finite difference method is used to solve the stricter system of equations, that additionally takes into account the process of power exchange between different order guided modes, so the computational error of the device can be estimated. It was obtained, that the possible size of the device may not exceed 1 mm in the largest dimension, while the computational error does not exceed 3%.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 53
Author(s):  
Junkee Jeon ◽  
Geonwoo Kim

In this paper, we study the valuation of power exchange options with a correlated hybrid credit risk when the underlying assets follow the jump-diffusion processes. The hybrid credit risk model is constructed using two credit risk models (the reduced-form model and the structural model), and the jump-diffusion processes are proposed based on the assumptions of Merton. We assume that the dynamics of underlying assets have correlated continuous terms as well as idiosyncratic and common jump terms. Under the proposed model, we derive the explicit pricing formula of the power exchange option using the measure change technique with multidimensional Girsanov’s theorem. Finally, the formula is presented as the normal cumulative functions and the infinite sums.


2021 ◽  
Author(s):  
Dariusz Ruciński

The article is an attempt of the methodological approach to the proposed quantum-inspired method of neural modeling of prices quoted on the Day-Ahead Market operating at TGE S.A. In the proposed quantum-inspired neural model it was assumed, inter alia, that it is composed of 12 parallel Perceptron ANNs with one hidden layer. Moreover, it was assumed that weights and biases as processing elements are described by density matrices, and the values flowing through the Artificial Neural Network of Signals are represented by qubits. Calculations checking the correctness of the adopted method and model were carried out with the use of linear algebra and vector-matrix calculus in MATLAB and Simulink environments. The obtained research results were compared to the results obtained from the neural model with the use of a comparative model.


Author(s):  
Leonardo Rydin Gorjão ◽  
Dirk Witthaut ◽  
Pedro G. Lind ◽  
Wided Medjroubi

The European Power Exchange has introduced day-ahead auctions and continuous trading spot markets to facilitate the insertion of renewable electricity. These markets are designed to balance excess or lack of power in short time periods, which leads to a large stochastic variability of the electricity prices. Furthermore, the different markets show different stochastic memory in their electricity price time series, which seem to be the cause for the large volatility. In particular, we show the antithetical temporal correlation in the intraday 15 minutes spot markets in comparison to the day-ahead hourly market. We contrast the results from Detrended Fluctuation Analysis (DFA) to a new method based on the Kramers–Moyal equation in scale. For very short term (< 12 hours), all price time series show positive temporal correlations (Hurst exponent H > 0.5) except for the intraday 15 minute market, which shows strong negative correlations (H < 0.5). For longer term periods covering up to two days, all price time series are anti-correlated (H < 0.5).


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8464
Author(s):  
Mauro Andriollo ◽  
Simone Bernasconi ◽  
Andrea Tortella

This paper discusses some design issues of a magnetic rotating to linear motion converter (RLMC), suitable for the propulsion system of a short-distance low-capacity vehicle. It basically operates like a magnetic rack, which executes the contactless conversion of the motor torque into a propulsion thrust, deriving from the interaction of on-board permanent magnet (PM) modules and stationary ferromagnetic steel pieces. A design procedure is set up that deals with both the PM module arrangement and the geometric shape of the steel pieces to optimize different performance aspects. A simplified modeling based on 2D transient finite element analyses is carried out to determine the thrust profile and the RLMC losses, which are essential to assess its practical feasibility. Finally, the characteristics as functions of the load angle and speed are determined to enable the prediction of the dynamic power exchange and then of the net energy demand useful to size the on-board source.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7994
Author(s):  
Vasileios M. Laitsos ◽  
Dimitrios Bargiotas ◽  
Aspassia Daskalopulu ◽  
Athanasios Ioannis Arvanitidis ◽  
Lefteri H. Tsoukalas

The growing demand for electricity runs counter to European-level goals, which include activities aimed at sustainable development and environmental protection. In this context, efficient consumption of electricity attracts much research interest nowadays. One environment friendly solution to meet increased demand lies in the deployment of Renewable Energy Sources (RES) in the network and in mobilizing the active participation of consumers in reducing the peak of demand, thus smoothing the overall load curve. This paper addresses the issue of efficient and economical use of electricity from the Demand Side Management (DSM) perspective and presents an implementation of a fully-parameterized and explicitly constrained incentive-based demand response program The program uses the Particle Swarm Optimization algorithm and demonstrates the potential advantages of integrating RES while supporting two-way communication between energy production and consumption and two-way power exchange between the main grid and the RES.


Author(s):  
Li-Ming Yu ◽  
Fulvio Zonca ◽  
Zhiyong Qiu ◽  
Liu Chen ◽  
Wei Chen ◽  
...  

Abstract Recent observations in HL-2A tokamak give new experimental evidences of energetic particle mode (EPM) avalanche. In a strong EPM burst, the mode structure propagates radially outward within two hundred Alfvén time, while the frequency of the dominant mode changes self-consistently to maximize wave-particle power exchange and mode growth. This suggests that significant energetic particle transport occurs in this avalanche phase, in agreement with theoretical framework of EPM convective amplification. A simplified relay runner model yields satisfactory interpretations of the measurements. The results can help understanding the nonlinear dynamics of energetic particle driven modes in future burning plasmas, such as ITER.


2021 ◽  
Author(s):  
Ramanuja Panigrahi ◽  
Santanu Mishra ◽  
Suresh C. Srivastava ◽  
Prasad Enjeti

<em>Realizing a smart Low Voltage Distribution System (LVDS) is essential to realize a smart grid. Restructuring the existing distribution system into microgrids is one important requirement to achieve a smart LVDS. The realization of microgrids in LVDS can take different shapes in different countries. This article discusses the challenges and practical solutions to realize a smart LVDS for radial distribution grids, which are common in India. The network following a distribution transformer can be distinguished as a microgrid for radial low voltage distribution grids. However, this leads to many operational issues. Therefore, this article envisions replacing the Low Voltage distribution transformers with <a>Solid-State Transformers </a>(SSTs). This will enable the LVDS to control the power exchange between the phases within a microgrid as well as power exchange between different microgrids. The architectural design of a smart home in smart LVDS is outlined to complete the discussion. Various unique features required for smart inverters in a smart home and existing grid codes to make them compatible with smart LVDS are also reviewed.</em><i></i>


2021 ◽  
Author(s):  
Ramanuja Panigrahi ◽  
Santanu Mishra ◽  
Suresh C. Srivastava ◽  
Prasad Enjeti

<em>Realizing a smart Low Voltage Distribution System (LVDS) is essential to realize a smart grid. Restructuring the existing distribution system into microgrids is one important requirement to achieve a smart LVDS. The realization of microgrids in LVDS can take different shapes in different countries. This article discusses the challenges and practical solutions to realize a smart LVDS for radial distribution grids, which are common in India. The network following a distribution transformer can be distinguished as a microgrid for radial low voltage distribution grids. However, this leads to many operational issues. Therefore, this article envisions replacing the Low Voltage distribution transformers with <a>Solid-State Transformers </a>(SSTs). This will enable the LVDS to control the power exchange between the phases within a microgrid as well as power exchange between different microgrids. The architectural design of a smart home in smart LVDS is outlined to complete the discussion. Various unique features required for smart inverters in a smart home and existing grid codes to make them compatible with smart LVDS are also reviewed.</em><i></i>


Sign in / Sign up

Export Citation Format

Share Document