Thermal-hydraulic performance analysis of printed circuit heat exchanger precooler in the Brayton cycle for supercritical CO2 waste heat recovery

2022 ◽  
Vol 305 ◽  
pp. 117923
Author(s):  
Bohan Liu ◽  
Mingjian Lu ◽  
Bo Shui ◽  
Yuwei Sun ◽  
Wei Wei
Author(s):  
Akshay Khadse ◽  
Lauren Blanchette ◽  
Jayanta Kapat ◽  
Subith Vasu ◽  
Kareem Ahmed

For the application of waste heat recovery (WHR), supercritical CO2 (S-CO2) Brayton power cycles offer significant suitable advantages such as compactness, low capital cost and applicable to a broad range of heat source temperatures. The current study is focused on thermodynamic modelling and optimization of Recuperated (RC) and Recuperated Recompression (RRC) S-CO2 Brayton cycles for exhaust heat recovery from a next generation heavy duty simple cycle gas turbine using a genetic algorithm. The Genetic Algorithm (GA) is mainly based on bio-inspired operators such as crossover, mutation and selection. This non-gradient based algorithm yields a simultaneous optimization of key S-CO2 Brayton cycle decision variables such as turbine inlet temperature, pinch point temperature difference, compressor pressure ratio. It also outputs optimized mass flow rate of CO2 for the fixed mass flow rate and temperature of the exhaust gas. The main goal of the optimization is to maximize power out of the exhaust stream which makes it single objective optimization. The optimization is based on thermodynamic analysis with suitable practical assumptions which can be varied according to the need of user. Further the optimal cycle design points are presented for both RC and RRC configurations and comparison of net power output is established for waste heat recovery.


Author(s):  
Hongfei Zhang ◽  
Lingfeng Shi ◽  
Wang Xuan ◽  
Tianyu Chen ◽  
Yurong Li ◽  
...  

Author(s):  
Francis A. Di Bella

This presentation will discuss the results of the feasibility analysis of a Brayton cycle-based, supercritical CO2 system that recovers waste heat from an MT30 gas turbine used in marine applications. The analysis also included the use of thermoelectric generator (TEG) devices that are one of several direct energy conversion methods known to be applicable to waste heat recovery. The analysis was conducted by Concepts NREC, in collaboration with the Maine Maritime Academy and their principal consultant, Thermoelectric Power Systems, LLC. The feasibility analysis was conducted under Navy SBIR Proposal Number N103-229-0533, entitled “Gas Turbine Engine Exhaust Waste Heat Recovery Shipboard Module Development”. The objective of the project was to improve the energy efficiency of the MT30 prime-mover power system for the Navy and other commercial vessels. The performance goal for the energy recovery system was to improve the fuel economy of the prime mover by 20% when significantly part-loaded.


2017 ◽  
Vol 83 (847) ◽  
pp. 16-00416-16-00416
Author(s):  
Hiromasa YANAGISAWA ◽  
Yuichiro TANAKA ◽  
Shuichi NAKAGAWA

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4252
Author(s):  
Cheng-Yen Chang ◽  
Wei-Hsin Chen ◽  
Lip Huat Saw ◽  
Arjay Avilla Arpia ◽  
Manuel Carrera Uribe

The printed circuit heat exchanger (PCHE) is a promising waste heat recovery technology to improve energy efficiency. The current investigation presents the experimental results on the thermal performance of a novel PCHE for low-temperature waste heat recovery. The novel PCHE was manufactured using precision machining and diffusion bonding. The thermal performances, such as effectiveness and NTU values at different temperatures, are evaluated, and water is used as a working fluid. The experimental results indicate that the PCHE’s effectiveness is around 0.979 for an inlet flow temperature of 95 °C. The predominant factors affecting the thermal performance of the PCHE are the inlet flow temperature and the flow rate of the working fluid. In addition, a comparison of the experimental results and the literature shows that the effectiveness of the PCHE is better than the others, which have fewer layers of PCHE fins.


Sign in / Sign up

Export Citation Format

Share Document