Minimal alteration of montmorillonite following long-term interaction with natural alkaline groundwater: Implications for geological disposal of radioactive waste

2016 ◽  
Vol 66 ◽  
pp. 184-197 ◽  
Author(s):  
Antoni E. Milodowski ◽  
Simon Norris ◽  
W.Russell Alexander
2019 ◽  
Vol 482 (1) ◽  
pp. 1-9
Author(s):  
Simon Norris

AbstractGeological disposal provides the safe long-term management solution for higher-activity radioactive waste. The development of a repository (or geological disposal facility) requires a systematic and integrated approach, taking into account the characteristics of the waste to be emplaced, the enclosing engineered barriers, and the host rock and its geological setting.Clays and clayey material are important in the development of many national geological disposal systems. Clays exhibit many interesting properties, and are proposed both as host rocks and as material for engineered barriers. Whatever their use, clays present various characteristics that make them high-quality barriers to the migration of radionuclides and chemical contaminants. As host rocks, clays are, in addition, hydrogeologically, geochemically and mechanically stable over geological timescales (i.e. millions of years).


Author(s):  
Bruno Kursten ◽  
Frank Druyts ◽  
Pierre Van Iseghem

Abstract The current worldwide trend for the final disposal of conditioned high-level, medium-level and long-lived alpha-bearing radioactive waste focuses on deep geological disposal. During the geological disposal, the isolation between the radioactive waste and the environment (biosphere) is realised by the multibarrier principle, which is based on the complementary nature of the various natural and engineered barriers. One of the main engineered barriers is the metallic container (overpack) that encloses the conditioned waste. In Belgium, the Boom Clay sediment is being studied as a potential host rock formation for the final disposal of conditioned high-level radioactive waste (HLW) and spent fuel. Since the mid 1980’s, SCK•CEN has developed an extensive research programme aimed at evaluating the suitability of a wide variety of metallic materials as candidate overpack material for the disposal of HLW. A multiple experimental approach is applied consisting of i) in situ corrosion experiments, ii) electrochemical experiments (cyclic potentiodynamic polarisation measurements and monitoring the evolution of ECORR as a function of time), and iii) immersion experiments. The in situ corrosion experiments were performed in the underground research facility, the High Activity Disposal Experimental Site, or HADES, located in the Boom clay layer at a depth of 225 metres below ground level. These experiments aimed at predicting the long-term corrosion behaviour of various candidate container materials. It was believed that this could be realised by investigating the medium-term interactions between the container materials and the host formation. These experiments resulted in a change of reasoning at the national authorities concerning the choice of over-pack material from the corrosion-allowance material carbon steel towards corrosion-resistant materials such as stainless steels. The main arguments being the severe pitting corrosion during the aerobic period and the large amount of hydrogen gas generated during the subsequent anaerobic period. The in situ corrosion experiments however, did not allow to unequivocally quantify the corrosion of the various investigated candidate overpack materials. The main shortcoming was that they did not allow to experimentally separate the aerobic and anaerobic phase. This resulted in the elaboration of a new laboratory programme. Electrochemical corrosion experiments were designed to investigate the effect of a wide variety of parameters on the localised corrosion behaviour of candidate overpack materials: temperature, SO42−, Cl−, S2O32−, oxygen content (aerobic - anaerobic),… Three characteristic potentials can be derived from the cyclic potentiodynamic polarisation (CPP) curves: i) the open circuit potential, OCP, ii) the critical potential for pit nucleation, ENP, and iii) the protection potential, EPP. Monitoring the open circuit potential as a function of time in clay slurries, representative for the underground environment, provides us with a more reliable value for the corrosion potential, ECORR, under disposal conditions. The long-term corrosion behaviour of the candidate overpack materials can be established by comparing the value of ECORR relative to ENP and EPP (determined from the CPP-curves). The immersion tests were developed to complement the in situ experiments. These experiments aimed at determining the corrosion rate and to identify the corrosion processes that can occur during the aerobic and anaerobic period of the geological disposal. Also, some experiments were elaborated to study the effect of graphite on the corrosion behaviour of the candidate overpack materials.


Author(s):  
Hiroyoshi Ueda ◽  
Satoru Suzuki ◽  
Katsuhiko Ishiguro ◽  
Kiyoshi Oyamada ◽  
Shoko Yashio ◽  
...  

NUMO (Nuclear Waste Management Organization of Japan) has the responsibility for implementing deep geological disposal of high-level (HLW) and transuranic (TRU) radioactive waste from the Japanese nuclear programme. A formal Requirements Management System (RMS) is planned to efficiently and effectively support the computerised implementation of the management strategy and the methodology required to drive the step-wise siting processes, and the following repository operational phase. The RMS will help in the comprehensive management of the decision-making processes in the geological disposal project, in change management as the disposal system is optimised, in driving projects such as the R&D programme efficiently, and in maintaining structured records regarding past decisions, all of which lead to soundness of the project in terms of long-term continuity. The system is planned to have information handling and management functions using a database that includes the decisions/requirements in the programme under consideration, the way in which these are structured in terms of the decision-making process and other associated information. A two-year development programme is underway to develop and enhance an existing trial RMS to a practical system. Functions for change management, history management and association with the external timeline management system are being implemented in the system development work. The database format is being improved to accommodate the requirements management data relating to the facility design and to safety assessment of the deep geological repository. This paper will present an outline of the development work with examples to demonstrate the system’s practicality. In parallel with the system/database developments, a case research of the use of requirements management in radioactive waste disposal projects was undertaken to identify key issues in the development of an RMS for radioactive waste disposal and specify a number of use cases to guide the overall development of the system. The findings of the case research will also be shown in the paper to provide general information on the application of an RMS in a radioactive waste disposal programme, the difficulties of successful implementation and suggestions on how these difficulties can be overcome.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2239
Author(s):  
Leszek Lankof

Together with renewable energy sources, nuclear power represents an important contribution to a sustainable energy mix in many countries and has an important impact on sustainable development. Nuclear energy production is also a source of high-level radioactive waste (HLW) and spent nuclear fuel (SNF), which require special concern. Disposal in deep geological formations is one of the solutions for the long-term management of HLW and SNF. It requires the development of a concept ensuring long-term safe isolation of waste and its validation applying the safety case methodology, which is a formal compilation of evidence, analyses and arguments that quantify and justify a claim that the repository will be safe. The results of laboratory testing of a potential repository host rock are an important component of the evidence that helps in the safety assessment of the deep geological disposal concept. This paper presents results of research focused on the physical, geomechanical and sorption properties of the Brown and Red Zuber unit rocks from the Kłodawa Salt Mine in Poland, which together with rock salt are an important component of Polish salt domes. The Brown and Red Zubers are typical evaporite lithostratigraphic units for the Polish part of the Zechstein Basin. They consist of halite (15–85%) and water-insoluble minerals, such as anhydrite, clay minerals, carbonates, quartz and feldspar, which occurred in varying proportions in the tested samples. The properties of the zuber rocks have been compared with those of rock salt, which is considered a suitable host rock for deep geological disposal of radioactive waste.


Author(s):  
Stan Gordelier ◽  
Pa´l Kova´cs

The world is facing energy difficulties for the future, in terms of security of supply and climate change issues. Nuclear power is virtually carbon free and it contributes to energy security, being a quasi-domestic source. Whilst it cannot provide a complete answer to these challenges, it is certainly capable of providing a significant component of the answer. However, nuclear power remains controversial. In order to gain public acceptance, it is widely recognised that a number of key issues need to be addressed, amongst which is resolution of the high-level radioactive waste (HLW) (including spent fuel) disposal issue. This is an important issue for all countries with an existing nuclear programme, whether or not it is intended that nuclear power should be phased out or expanded — the waste already exists and must be managed in any event. It is equally important for countries planning a new nuclear power programme where none has previously existed. Since nuclear power was first developed over fifty years ago, HLW arisings have been stored as an interim measure. It is widely believed by experts (though not by many opponents of the nuclear industry, nor by the public) that deep geological disposal, after a reasonable cooling time in interim storage, is technically feasible and constitutes a safe option [1] at an acceptable cost. The total volume of HLW from nuclear reactors is relatively small. A key issue, however, is the time-scale for developing such a final disposal solution. Considerations of security and inter-generational equity suggest that geological disposal should be implemented as soon as possible irrespective of whether or not new arisings are created. The question of managing HLW is not necessarily related to the issue of building new nuclear power stations. However, many opponents argue that there has been insufficient demonstration of the long-term safety of deep geological disposal. The same opponents also argue that there should be a moratorium on building new nuclear power plants (NPPs) until the issue of long-term management of HLW is resolved. These arguments have a powerful influence on public opinion towards both the construction of a waste repository and the building of new NPPs. The intent of this paper (developed from the current OECD NEA study on “Timing of High Level Waste Disposal”) is to identify and discuss some of the factors influencing the timing of the implementation of a HLW disposal strategy and to demonstrate to decision makers how these factors are affecting country strategies, based on current experience. Determining an optimum timescale of HLW disposal may be affected by a wide range of factors. The study examines how social acceptability, technical soundness, environmental responsibility and economic feasibility impact on the timing of HLW disposal and can be balanced in a national radioactive waste management strategy taking the social, political and economic environment into account. There is clear evidence that significant fractions of the public still have serious misconceptions with respect to the issues surrounding nuclear waste. The nuclear industry, together with governments in those countries who would like a component of nuclear power in their energy mix, has a responsibility for and a significant challenge in presenting its case to the public.


Sign in / Sign up

Export Citation Format

Share Document