aerobic and anaerobic
Recently Published Documents


TOTAL DOCUMENTS

2678
(FIVE YEARS 439)

H-INDEX

93
(FIVE YEARS 8)

2024 ◽  
Vol 84 ◽  
Author(s):  
M. C. Melo ◽  
A. P. M. Carvalho Neto ◽  
T. L. G. Q. Maranhão ◽  
E. S. Costa ◽  
C. M. A. Nascimento ◽  
...  

Abstract Routine blood culture is used for the detection of bloodstream infections by aerobic and anaerobic bacteria and by common pathogenic yeasts. A retrospective study was conducted in a public hospital in Maceió-AL, by collecting data of all medical records with positive blood cultures. Out of the 2,107 blood cultures performed, 17% were positive with Staphylococcus coagulase negative (51.14%), followed by Staphylococcus aureus (11.21%) and Klebsiella pneumoniae (6.32%). Gram-positive bacteria predominated among positive blood cultures, highlighting the group of Staphylococcus coagulase-negative. While Gram-negative bacteria had a higher number of species among positive blood cultures.


2022 ◽  
Vol 12 ◽  
Author(s):  
Taisuke Wakamatsu ◽  
Saki Mizobuchi ◽  
Fumiaki Mori ◽  
Taiki Futagami ◽  
Takeshi Terada ◽  
...  

Substrate-induced gene expression (SIGEX) is a high-throughput promoter-trap method. It is a function-based metagenomic screening tool that relies on transcriptional activation of a reporter gene green fluorescence protein (gfp) by a metagenomic DNA library upon induction with a substrate. However, its use is limited because of the relatively small size of metagenomic DNA libraries and incompatibility with screening metagenomes from anaerobic environments. In this study, these limitations of SIGEX were addressed by fine-tuning metagenome DNA library construction protocol and by using Evoglow, a green fluorescent protein that forms a chromophore even under anaerobic conditions. Two metagenomic libraries were constructed for subseafloor sediments offshore Shimokita Peninsula (Pacific Ocean) and offshore Joetsu (Japan Sea). The library construction protocol was improved by (a) eliminating short DNA fragments, (b) applying topoisomerase-based high-efficiency ligation, (c) optimizing insert DNA concentration, and (d) column-based DNA enrichment. This led to a successful construction of metagenome DNA libraries of approximately 6 Gbp for both samples. SIGEX screening using five aromatic compounds (benzoate, 3-chlorobenzoate, 3-hydroxybenzoate, phenol, and 2,4-dichlorophenol) under aerobic and anaerobic conditions revealed significant differences in the inducible clone ratios under these conditions. 3-Chlorobenzoate and 2,4-dichlorophenol led to a higher induction ratio than that for the other non-chlorinated aromatic compounds under both aerobic and anaerobic conditions. After the further screening of induced clones, a clone induced by 3-chlorobenzoate only under anaerobic conditions was isolated and characterized. The clone harbors a DNA insert that encodes putative open reading frames of unknown function. Previous aerobic SIGEX attempts succeeded in the isolation of gene fragments from anaerobes. This study demonstrated that some gene fragments require a strict in vivo reducing environment to function and may be potentially missed when screened by aerobic induction. The newly developed anaerobic SIGEX scheme will facilitate functional exploration of metagenomes from the anaerobic biosphere.


2022 ◽  
Vol 23 (2) ◽  
pp. 748
Author(s):  
Damian Jozef Flis ◽  
Emilia Gabriela Bialobrodzka ◽  
Ewa Aleksandra Rodziewicz-Flis ◽  
Zbigniew Jost ◽  
Andzelika Borkowska ◽  
...  

This study investigates the effect of Dexamethasone (Dex) treatment on blood and skeletal muscle metabolites level and skeletal muscle activity of enzymes related to energy metabolism after long-duration swimming. To evaluate whether Dex treatment, swimming, and combining these factors act on analyzed data, rats were randomly divided into four groups: saline treatment non-exercise and exercise and Dex treatment non-exercised and exercised. Animals in both exercised groups underwent long-lasting swimming. The concentration of lipids metabolites, glucose, and lactate were measured in skeletal muscles and blood according to standard colorimetric and fluorimetric methods. Also, activities of enzymes related to aerobic and anaerobic metabolism were measured in skeletal muscles. The results indicated that Dex treatment induced body mass loss and increased lipid metabolites in the rats’ blood but did not alter these changes in skeletal muscles. Interestingly, prolonged swimming applied after 9 days of Dex treatment significantly intensified changes induced by Dex; however, there was no difference in skeletal muscle enzymatic activities. This study shows for the first time the cumulative effect of exercise and Dex on selected elements of lipid metabolism, which seems to be essential for the patient’s health due to the common use of glucocorticoids like Dex.


Author(s):  
Lavanya Raajaraam ◽  
Karthik Raman

Microbial production of chemicals is a more sustainable alternative to traditional chemical processes. However, the shift to bioprocess is usually accompanied by a drop in economic feasibility. Co-production of more than one chemical can improve the economy of bioprocesses, enhance carbon utilization and also ensure better exploitation of resources. While a number of tools exist for in silico metabolic engineering, there is a dearth of computational tools that can co-optimize the production of multiple metabolites. In this work, we propose co-FSEOF (co-production using Flux Scanning based on Enforced Objective Flux), an algorithm designed to identify intervention strategies to co-optimize the production of a set of metabolites. Co-FSEOF can be used to identify all pairs of products that can be co-optimized with ease using a single intervention. Beyond this, it can also identify higher-order intervention strategies for a given set of metabolites. We have employed this tool on the genome-scale metabolic models of Escherichia coli and Saccharomyces cerevisiae, and identified intervention targets that can co-optimize the production of pairs of metabolites under both aerobic and anaerobic conditions. Anaerobic conditions were found to support the co-production of a higher number of metabolites when compared to aerobic conditions in both organisms. The proposed computational framework will enhance the ease of study of metabolite co-production and thereby aid the design of better bioprocesses.


2022 ◽  
Author(s):  
Immani Mckenzie ◽  
Seecharran Diana ◽  
Sirpaul Jaikishun ◽  
Abdullah Ansari

Composting is a self-heating, aerobic, bio-decomposition process of organic waste that has advantages over other disposal strategies since it reduces waste volume by 40-50% and kills pathogens by the heat generated during the thermophilic phase. This process uses organic waste (food scraps, grass chipping, etc.), water, soil (for added microbes) and either incorporation of air by turning the compost (aerobic) or lack of air within the compost (anaerobic). This study is designed to comparatively assess aerobic and anaerobic composting mechanisms on the productivity rate and analyse the different variables influencing the process. Based on the results obtained the time taken to completely compost the organic materials might not always be the same, because composting time is dependent on the percentage of microorganisms, water content, temperature and C:N ratio present in the pile at the said time along with the amount of material to be composted. Finally, this study will not only help farmers but also the general public in choosing a cost-effective and environmentally friendly way of reducing organic waste from landfills and reduction of greenhouse gases in the ozone layer.


Author(s):  
Dung Tran Van ◽  
Thu Tat Anh ◽  
Long Vu Van ◽  
Da Chau Thi

This study investigated the influence of soil undergoing different crop rotations on the CH<sub>4</sub>, CO<sub>2</sub> emissions, and decomposition of rice straw. The studied soil undergoing crop rotation systems were rice-rice-rice (SR) and baby corn-rice-mungbean (SB). Two main microcosm set-ups: anaerobic (SR-AN, SB-AN) and aerobic (SR-AE, SB-AE) conditions. Litter bags containing rice stems were inserted into the soil and recollected at different time points for chemical analysing and the gas sampling was collected to measure the CO<sub>2</sub> and CH<sub>4</sub> emissions. The results indicated that the total carbon (TC) decreased around 30%, and the TC removal in anaerobic was significantly higher than in aerobic conditions. The residue cellulose content varied in a range from 68.2% to 78.6%, while the hemicellulose content varied from 57.4% to 69.3% at day 50 after incorporation. There were no significant differences in the total nitrogen removal, cellulose, hemicellulose, and lignin contents among the microcosm set-ups. CO<sub>2</sub> emission increased in all the microcosm set-ups with the treatments without rice straw (CTSR, CTSB) in both aerobic and anaerobic conditions. CH<sub>4</sub> release in the SR-AN treatments did not differ significantly compared with the SB-AN treatments. This study confirmed that the decomposition of rice straw residues is faster in the anaerobic paddy soil condition compared to the aerobic crop rotation condition.  


2021 ◽  
Vol 34 (3) ◽  
pp. 211-218
Author(s):  
Zeynep Taner ◽  
Mehmet Velidedeoğlu ◽  
Bilgul Mete ◽  
Mehmet Demirci ◽  
Fatih Dal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document