scholarly journals Global analysis of an environmental disease transmission model linking within-host and between-host dynamics

2020 ◽  
Vol 86 ◽  
pp. 404-423
Author(s):  
Liming Cai ◽  
Zhaoqing Li ◽  
Chayu Yang ◽  
Jin Wang
2009 ◽  
Vol 39 (2) ◽  
pp. 936-941 ◽  
Author(s):  
Jean Jules Tewa ◽  
Jean Luc Dimi ◽  
Samuel Bowong

Author(s):  
Prabir Panja ◽  
Shyamal Kumar Mondal ◽  
Joydev Chattopadhyay

AbstractIn this paper, a malaria disease transmission model has been developed. Here, the disease transmission rates from mosquito to human as well as human to mosquito and death rate of infected mosquito have been constituted by two variabilities: one is periodicity with respect to time and another is based on some control parameters. Also, total vector population is divided into two subpopulations such as susceptible mosquito and infected mosquito as well as the total human population is divided into three subpopulations such as susceptible human, infected human and recovered human. The biologically feasible equilibria and their stability properties have been discussed. Again, the existence condition of the disease has been illustrated theoretically and numerically. Hopf-bifurcation analysis has been done numerically for autonomous case of our proposed model with respect to some important parameters. At last, a optimal control problem is formulated and solved using Pontryagin’s principle. In numerical simulations, different possible combination of controls have been illustrated including the comparisons of their effectiveness.


Sign in / Sign up

Export Citation Format

Share Document