scholarly journals Generalized Hill-Mendel lemma and equivalent inclusion method for determining the effective thermal conductivity of composites with imperfect interfaces

2021 ◽  
Vol 90 ◽  
pp. 624-649
Author(s):  
D.-H. Nguyen ◽  
H. Le Quang ◽  
Q.-C. He ◽  
A.-T. Tran
2000 ◽  
Vol 68 (1) ◽  
pp. 3-10 ◽  
Author(s):  
H. M. Shodja ◽  
A. S. Sarvestani

Consider a double-inhomogeneity system whose microstructural configuration is composed of an ellipsoidal inhomogeneity of arbitrary elastic constants, size, and orientation encapsulated in another ellipsoidal inhomogeneity, which in turn is surrounded by an infinite medium. Each of these three constituents in general possesses elastic constants different from one another. The double-inhomogeneity system under consideration is subjected to far-field strain (stress). Using the equivalent inclusion method (EIM), the double inhomogeneity is replaced by an equivalent double-inclusion (EDI) problem with proper polynomial eigenstrains. The double inclusion is subsequently broken down to single-inclusion problems by means of superposition. The present theory is the first to obtain the actual distribution rather than the averages of the field quantities over the double inhomogeneity using Eshelby’s EIM. The present method is precise and is valid for thin as well as thick layers of coatings, and accommodates eccentric heterogeneity of arbitrary size and orientation. To establish the accuracy and robustness of the present method and for the sake of comparison, results on some of the previously reported problems, which are special cases encompassed by the present theory, will be re-examined. The formulations are easily extended to treat multi-inhomogeneity cases, where an inhomogeneity is surrounded by many layers of coatings. Employing an averaging scheme to the present theory, the average consistency conditions reported by Hori and Nemat-Nasser for the evaluation of average strains and stresses are recovered.


Sign in / Sign up

Export Citation Format

Share Document