Improving the engine cooling system using a power generation cycle for low-temperature heat source (heat losses in engine) instead of radiator

2017 ◽  
Vol 120 ◽  
pp. 196-202 ◽  
Author(s):  
K. Goudarzi ◽  
M. Keshtgar
Energy ◽  
2011 ◽  
Vol 36 (9) ◽  
pp. 5497-5507 ◽  
Author(s):  
Fredy Vélez ◽  
José Segovia ◽  
Farid Chejne ◽  
Gregorio Antolín ◽  
Ana Quijano ◽  
...  

2015 ◽  
Vol 70 ◽  
pp. 454-461 ◽  
Author(s):  
Tao He ◽  
Xinyu Zhang ◽  
Conghui Wang ◽  
Min Wang ◽  
Bojia Li ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1853 ◽  
Author(s):  
Pavel Neuberger ◽  
Radomír Adamovský

The efficiency of a heat pump energy system is significantly influenced by its low-temperature heat source. This paper presents the results of operational monitoring, analysis and comparison of heat transfer fluid temperatures, outputs and extracted energies at the most widely used low temperature heat sources within 218 days of a heating period. The monitoring involved horizontal ground heat exchangers (HGHEs) of linear and Slinky type, vertical ground heat exchangers (VGHEs) with single and double U-tube exchanger as well as the ambient air. The results of the verification indicated that it was not possible to specify clearly the most advantageous low-temperature heat source that meets the requirements of the efficiency of the heat pump operation. The highest average heat transfer fluid temperatures were achieved at linear HGHE (8.13 ± 4.50 °C) and double U-tube VGHE (8.13 ± 3.12 °C). The highest average specific heat output 59.97 ± 41.80 W/m2 and specific energy extracted from the ground mass 2723.40 ± 1785.58 kJ/m2·day were recorded at single U-tube VGHE. The lowest thermal resistance value of 0.07 K·m2/W, specifying the efficiency of the heat transfer process between the ground mass and the heat transfer fluid, was monitored at linear HGHE. The use of ambient air as a low-temperature heat pump source was considered to be the least advantageous in terms of its temperature parameters.


Author(s):  
S. Ehsan Shakib ◽  
Majid Amidpour ◽  
Cyrus Aghanajafi

Most of the potable water and electricity are produced by dual purpose plants. Dual-purpose plants are the one that supplies heat for a thermal desalination unit and produces electricity for distribution to the electrical grid. In this paper a power plant is combined with a multi-effect evaporation thermal vapor compression (METVC) system. Compared with the most widely used (Multi Stage Flash) MSF desalination, METVC has more advantages. Then, energy and exergy analysis equations for desalination plant, power generation cycle, heat recovery steam generator and combined power and water cycle are developed and the results are presented. Results show by rising number of effect from 2 to 14, performance ratio, exergy efficiency and specific heat transfer area rise steadily. For combined system, the maximum and minimum values of exergy destruction rate are related to combustion chamber and desalination effects, respectively. Also, with increasing TIT, exergy destruction rate of power generation cycle decreases while the exergy destruction rate of METVC, especially thermo compressor, goes up and fresh water production reduces dramatically.


Sign in / Sign up

Export Citation Format

Share Document