scholarly journals Nucleate pool boiling heat transfer of SES36 fluid on nanoporous surfaces obtained by electrophoretic deposition of Al2O3

2018 ◽  
Vol 141 ◽  
pp. 143-152 ◽  
Author(s):  
Gu Song ◽  
Philip A. Davies ◽  
Jie Wen ◽  
Guoqiang Xu ◽  
Yongkai Quan
1998 ◽  
Vol 29 (1-3) ◽  
pp. 196-207
Author(s):  
Haruhiko Ohta ◽  
Koichi Inoue ◽  
Suguru Yoshida ◽  
Tomoji S. Morita

2021 ◽  
Vol 122 ◽  
pp. 122-133
Author(s):  
Wen-Tao Ji ◽  
Shi-Ming Xiong ◽  
Li Chen ◽  
Chuang-Yao Zhao ◽  
Wen-Quan Tao

Author(s):  
Zan Wu ◽  
Anh Duc Pham ◽  
Zhen Cao ◽  
Cathrine Alber ◽  
Peter Falkman ◽  
...  

This work aims to investigate pool boiling heat transfer enhancement by using nanostructured surfaces. Two types of nanostructured surfaces were employed, gold nanoparticle-coated surfaces and alumina nanoparticle-coated surfaces. The nanostructured surfaces were fabricated by an electrophoretic deposition technique, depositing nanoparticles in a nanofluid onto smooth copper surfaces under an electric field. N-pentane and acetone were tested as working fluids. Compared to the smooth surface, the pool boiling heat transfer coefficient has been increased by 80% for n-pentane and acetone. Possible mechanisms for the enhancement in heat transfer are qualitatively provided. The increase in active nucleation site density due to multiple micro/nanopores on nanoparticle-coated surfaces is likely the main contributor. The critical heat flux on nanostructured surfaces are approximately the same as that on the smooth surface because both smooth and modified surfaces show similar wickability for the two working fluids.


Author(s):  
Zhen Cao ◽  
Anh Duc Pham ◽  
Zan Wu ◽  
Tautgirdas Ruzgas ◽  
Cathrine Alber ◽  
...  

Saturated pool boiling heat transfer of water is investigated experimentally on copper surfaces with nanoparticle coatings at atmospheric pressure. The coatings are generated by an electrophoretic deposition method (EPD). Three modified surfaces are prepared with gold nanoparticles of 0.20 mg, 0.25 mg and 0.30 mg, respectively. During the deposition, ethanol works as the solvent while the electrical potential and deposition time are controlled as 9.5 V and 30 min, respectively. The experimental results show that heat transfer coefficients (HTC) and critical heat fluxes (CHF) are enhanced on the modified surfaces. HTC increases with decreasing thickness of the coating, while CHF increases with increasing thickness of the coating. CHFs of EPD-0.20 mg, EPD-0.25 mg and EPD-0.30 mg are 93 W/cm2, 123 W/cm2 and 142 W/cm2, respectively, which are increased by 7%, 41% and 63% compared with the smooth surface. EPD-0.20 mg performs the best on heat transfer, with a maximum enhancement of around 60%. At the end, a brief review about mechanistic models of heat transfer at low and moderate heat fluxes is provided, based on which, the reasons why heat transfer is enhanced are discussed.


Sign in / Sign up

Export Citation Format

Share Document