Temperature distribution measurements and modelling of a liquid-liquid-vapour spray column direct contact heat exchanger

2018 ◽  
Vol 139 ◽  
pp. 542-551 ◽  
Author(s):  
Ali Sh. Baqir ◽  
Hameed B. Mahood ◽  
Asaad H. Sayer
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Hameed B. Mahood ◽  
Adel O. Sharif ◽  
Seyed Ali Hosseini ◽  
Rex B. Thorpe

An analytical model for the temperature distribution of a spray column, three-phase direct contact heat exchanger is developed. So far there were only numerical models available for this process; however to understand the dynamic behaviour of these systems, characteristic models are required. In this work, using cell model configuration and irrotational potential flow approximation characteristic models has been developed for the relative velocity and the drag coefficient of the evaporation swarm of drops in an immiscible liquid, using a convective heat transfer coefficient of those drops included the drop interaction effect, which derived by authors already. Moreover, one-dimensional energy equation was formulated involving the direct contact heat transfer coefficient, the holdup ratio, the drop radius, the relative velocity, and the physical phases properties. In addition, time-dependent drops sizes were taken into account as a function of vaporization ratio inside the drops, while a constant holdup ratio along the column was assumed. Furthermore, the model correlated well against experimental data.


1989 ◽  
Vol 111 (1) ◽  
pp. 166-172 ◽  
Author(s):  
T. C¸oban ◽  
R. Boehm

A numerical model of a three-phase, direct-contact, spray-column heat exchanger has been developed. This model has been used to calculate performance information about this type of device and to compare, where possible, to experiments. General equations are defined for distance up the column using a physically based model for the local heat transfer. This model has been used to investigate a number of characteristics of these devices, such as temperature and holdup distributions through the column. A new formulation is given for a mixed, time-averaged temperature that may be representative of measurements taken with temperature transducers in direct-contact heat exchangers. Little has been given in the literature about quantitative variations of performance as a function of the key independent variables, and information on these aspects is presented here. Although the results presented are for a specific geometry (0.61 m diameter, 3 m active column height, evaporating pentane in 85°C water), the variations shown can give insights generally into the factors affecting performance in these devices. In virtually all cases examined here, extremely good comparisons are shown between predictions and measurements. Conclusions are drawn about the applicability of the model and the important effects demonstrated.


2019 ◽  
Vol 147 ◽  
pp. 592-601 ◽  
Author(s):  
Jianxin Xu ◽  
Qingtai Xiao ◽  
Zhihan Lv ◽  
Junwei Huang ◽  
Ruoxiu Xiao ◽  
...  

2001 ◽  
Vol 30 (2) ◽  
pp. 95-113
Author(s):  
Akiyoshi Ohira ◽  
Michio Yanadori ◽  
Kunihiko Iwabuchi ◽  
Toshikatsu Kimura ◽  
Yuji Tsubota

KSME Journal ◽  
1995 ◽  
Vol 9 (1) ◽  
pp. 19-28 ◽  
Author(s):  
In Seak Kang ◽  
Chong Bo Kim ◽  
Won Gee Chun

Sign in / Sign up

Export Citation Format

Share Document