Generic approach for estimating final feed water temperature and extraction pressures in pulverised coal power plants

2018 ◽  
Vol 141 ◽  
pp. 257-268 ◽  
Author(s):  
P.U. Akpan ◽  
W.F. Fuls
Author(s):  
Weiliang Wang ◽  
Hai Zhang ◽  
Junfu Lv ◽  
Weidou Ni ◽  
Yongsheng Li ◽  
...  

The world’s first 1000MW double reheat ultrasupercritical unit has been in operation since September 25th, 2015 in Taizhou, China. The thermal efficiency at turbine heat-rate acceptance (THA) condition is around 51%, which is the highest among all condensing units in coal-fired power plants around the world. However, the resultant superheat degree of the extraction steam is relatively high, leading to a large temperature difference in heat transfer process in the regenerative system, thereby a great exergy loss. In order to utilize the superheat of turbine bleeds more effectively, we present a scheme by employing an outer steam cooler (OSC) after the last high pressure heater in series to use the superheat to heat the feed water. Based on the newly installed unit in Taizhou, we examine the energy saving effect of the superheat utilization of different bleeds and their possible combinations respectively. The influencing factors of the mass flow rate, superheat, and effective superheat of the extraction steam are studied. Thermodynamic analyses revealed that the second extraction steam has not only high effective superheat, but also large mass flow rate, so in the overall efficiency improvement it ranks first and the third extraction steam ranks second. Although the fourth extraction steam has the largest superheat, it ranks third as the result of relatively lower mass flow rate. It was found that at nominal load, by adopting OSC’s to utilize the superheat of the second to sixth extraction steam, temperature of the feed water can increase by 8.1 °C, 3.5 °C, 2.6 °C, 1.1 °C, and 1 °C respectively, and the net coal consumption reduces by 0.73g/kWh, 0.47g/kWh, 0.40g/kWh, 0.21g/kWh and 0.22g/kWh accordingly. Consequently, three possible schemes are recommended for future design: one is to adopt one OSC to utilize the superheat of the second extraction steam, in return of 8.1°C increment in feed water temperature and 0.73g/kWh reduction of the net coal consumption; the second is to adopt two OSC’s to utilize the superheat of the second and third extraction steam at the same time, in return of 11.4 °C increment in feed water temperature and 1.21g/kWh reduction of the net coal consumption; and the last is to apply three OSC’s to utilize the superheat of the second to the fourth extraction steam simultaneously, to achieve 13.9°C increment in feed water temperature, and 1.62g/kWh reduction of the net coal consumption.


2007 ◽  
Vol 2 (3) ◽  
pp. 175-180 ◽  
Author(s):  
M. Lucquiaud ◽  
H. Chalmers ◽  
J. Gibbins

2018 ◽  
Vol 934 ◽  
pp. 117-123
Author(s):  
Rong Liu ◽  
Yi Li ◽  
Glenn McRae

The corrosion resistance of Stellite 6 alloy in morpholine solution with pH 9.5 is investigated using the electrochemical test method, simulating the amine environment of the boiler feed water service condition in coal power plants. Polarization test is performed on Stellite 6 alloy under the low potential varying from-0.4 VSCE to 1.2 VSCE and is also conducted under a constant high potential (4 VSCE) in order to fail the sample surface. 17-4PH stainless steel, which is also a common material for the application of the boiler feed water in coal power plants, is tested simultaneously under the same conditions for comparison. It is shown that the polarization curve 17-4PH steel from the low potential test has an apparent passivation region indicating a protective oxide film formed on the sample surface, but Stellite 6 only exhibits a tendency to passivate. Both samples after the failure tests under the high potential (4 VSC) are analyzed using SEM/EDX. The surface morphologies indicate that the former is severely corroded in the solution while the latter is less corroded. The corrosion mechanisms of Stellite 6 alloy and 174PH stainless steel in morpholine solution are discussed with assistance of the Pourbaix diagrams.


2012 ◽  
Author(s):  
Mark Woods ◽  
Michael Matuszewski ◽  
Robert Brasington

Sign in / Sign up

Export Citation Format

Share Document