The effect of different combinations of ammonia-water Rankine and absorption refrigeration cycles on the exergoeconomic performance of the cogeneration cycle

2018 ◽  
Vol 141 ◽  
pp. 1141-1160 ◽  
Author(s):  
Naser Shokati ◽  
Salah Khanahmadzadeh
2017 ◽  
Vol 39 (4) ◽  
pp. 439 ◽  
Author(s):  
Josegil Jorge de Araújo ◽  
Carlos Antonio Cabral dos Santos ◽  
Carlos Almir de Holanda ◽  
João Batista Furlan Duarte ◽  
Alvaro Antonio Villa Ochoa ◽  
...  

2020 ◽  
Vol 12 (2) ◽  
pp. 484 ◽  
Author(s):  
Nima Javanshir ◽  
Seyed Mahmoudi S. M. ◽  
M. Akbari Kordlar ◽  
Marc A. Rosen

A cogeneration cycle for electric power and refrigeration, using an ammonia-water solution as a working fluid and the geothermal hot water as a heat source, is proposed and investigated. The system is a combination of a modified Kalina cycle (KC) which produces power and an absorption refrigeration cycle (ARC) that generates cooling. Geothermal water is supplied to both the KC boiler and the ARC generator. The system is analyzed from thermodynamic and economic viewpoints, utilizing Engineering Equation Solver (EES) software. In addition, a parametric study is carried out to evaluate the effects of decision parameters on the cycle performance. Furthermore, the system performance is optimized for either maximizing the exergy efficiency (EOD case) or minimizing the total product unit cost (COD case). In the EOD case the exergy efficiency and total product unit cost, respectively, are calculated as 34.7% and 15.8$/GJ. In the COD case the exergy efficiency and total product unit cost are calculated as 29.8% and 15.0$/GJ. In this case, the cooling unit cost, c p , c o o l i n g , and power unit cost, c p , p o w e r , are achieved as 3.9 and 11.1$/GJ. These values are 20.4% and 13.2% less than those obtained when the two products are produced separately by the ARC and KC, respectively. The thermoeconomic analysis identifies the more important components, such as the turbine and absorbers, for modification to improve the cost-effectiveness of the system.


2013 ◽  
Vol 17 (3) ◽  
pp. 891-902 ◽  
Author(s):  
Sahraoui Kherris ◽  
Mohammed Makhlouf ◽  
Djallel Zebbar ◽  
Omar Sebbane

The full thermodynamic study of the absorption refrigeration units requires the knowledge of the thermodynamic properties of the used mixture. The present work deals with the mathematical modeling of the thermodynamic properties of ammonia-water mixtures using various models. The presented model covers high vapor-liquid equilibrium pressures up to 110 [bar] and temperatures from 230 to 600 [K]. Furthermore, the calculation of the thermodynamic properties of the ammonia-water mixtures and their pure components was carried out. The obtained results were compared with results given in the literature. This shows a good concordance. <br><br><font color="red"><b> This article has been corrected. Link to the correction <u><a href="http://dx.doi.org/10.2298/TSCI180624196E">10.2298/TSCI180624196E</a><u></b></font>


Sign in / Sign up

Export Citation Format

Share Document