scholarly journals Energy and Cost Analysis and Optimization of a Geothermal-Based Cogeneration Cycle Using an Ammonia-Water Solution: Thermodynamic and Thermoeconomic Viewpoints

2020 ◽  
Vol 12 (2) ◽  
pp. 484 ◽  
Author(s):  
Nima Javanshir ◽  
Seyed Mahmoudi S. M. ◽  
M. Akbari Kordlar ◽  
Marc A. Rosen

A cogeneration cycle for electric power and refrigeration, using an ammonia-water solution as a working fluid and the geothermal hot water as a heat source, is proposed and investigated. The system is a combination of a modified Kalina cycle (KC) which produces power and an absorption refrigeration cycle (ARC) that generates cooling. Geothermal water is supplied to both the KC boiler and the ARC generator. The system is analyzed from thermodynamic and economic viewpoints, utilizing Engineering Equation Solver (EES) software. In addition, a parametric study is carried out to evaluate the effects of decision parameters on the cycle performance. Furthermore, the system performance is optimized for either maximizing the exergy efficiency (EOD case) or minimizing the total product unit cost (COD case). In the EOD case the exergy efficiency and total product unit cost, respectively, are calculated as 34.7% and 15.8$/GJ. In the COD case the exergy efficiency and total product unit cost are calculated as 29.8% and 15.0$/GJ. In this case, the cooling unit cost, c p , c o o l i n g , and power unit cost, c p , p o w e r , are achieved as 3.9 and 11.1$/GJ. These values are 20.4% and 13.2% less than those obtained when the two products are produced separately by the ARC and KC, respectively. The thermoeconomic analysis identifies the more important components, such as the turbine and absorbers, for modification to improve the cost-effectiveness of the system.

2011 ◽  
Vol 15 (1) ◽  
pp. 29-41 ◽  
Author(s):  
Abdolreza Fazeli ◽  
Hossein Rezvantalab ◽  
Farshad Kowsary

In this study, a new combined power and refrigeration cycle is proposed, which combines the Rankine and absorption refrigeration cycles. Using a binary ammonia-water mixture as the working fluid, this combined cycle produces both power and refrigeration output simultaneously by employing only one external heat source. In order to achieve the highest possible exergy efficiency, a secondary turbine is inserted to expand the hot weak solution leaving the boiler. Moreover, an artificial neural network (ANN) is used to simulate the thermodynamic properties and the relationship between the input thermodynamic variables on the cycle performance. It is shown that turbine inlet pressure, as well as heat source and refrigeration temperatures have significant effects on the net power output, refrigeration output and exergy efficiency of the combined cycle. In addition, the results of ANN are in excellent agreement with the mathematical simulation and cover a wider range for evaluation of cycle performance.


Author(s):  
Ziyang Cheng ◽  
Yaxiong Wang ◽  
Qingxuan Sun ◽  
Jiangfeng Wang ◽  
Pan Zhao ◽  
...  

Abstract This paper proposes a novel cogeneration system based on Kalina cycle and absorption refrigeration system to meet the design requirements of China State Shipbuilding Corporation, which is efficiently satisfy the power and cooling demands of a maritime ship at the same time. Unlike most of the combined systems, this cogeneration system is highly coupled and realizes cogeneration without increasing the system complexity too much. The basic ammonia mass fraction of this novel system is increased, so that the ammonia concentration of ammonia-water steam from the separator can be higher, which contributes to lower refrigerating temperature and thus less heat loss in the distillation process. In addition, higher ammonia concentration solution makes overheating easier, which improves the thermal efficiency. Moreover, the system has two recuperators to make further improvement of the thermal efficiency. Thermodynamic models are developed to investigate the system performance and parametric analysis is conducted to figure out the effects of including working fluid temperature at the outlet of the evaporator, working fluid temperature at superheater outlet, mass fraction of ammonia in basic solution, turbine inlet pressure, temperature of cooling water at the inlet of condensers and the refrigeration evaporation temperature on the system performance. Furthermore, the cogeneration system is optimized with genetic algorithm to obtain the best performance, which achieves 333.00kW of net power output, 28.83 kW of cooling capacity and 21.81% of thermal efficiency. Finally, the performance of the proposed system is compared with an optimized recuperative organic Rankine cycle (ORC) system and an optimized Kalina cycle system 34 (KCS34) using the same heat source. The results show that the thermal efficiency and power output of the novel cogeneration system is 3.89% and 1.05% higher than that of the recuperative ORC system and KCS34 system respectively.


Author(s):  
Florea Chiriac ◽  
Robert Gavriliuc ◽  
Rodica Dumitrescu ◽  
Anica Ilie ◽  
Cristina Piˆrvu

The paper presents an absorption system with compact heat exchangers (micro-channels), working with ammonia water solution, driven by either solar or electrical energy. The construction of the solar panels includes heat pipes, and they are able to provide hot water with a maximum temperature of 130°C. The cooling capacity of the system ranges from 5 to 10 kW. The system is designed for comfort the technological air conditioning, providing inside air temperatures in the range of 10°C to 20°C. The project promotes ammonia as an ecological and natural refrigerant and aims to experimentally evaluate the thermal performances of each component of the system (condenser, evaporator, absorber and vapor generator) and of the entire system. The next step consists in a theoretical versus experimental comparison of data. The thermal performances refer to heat transfer coefficients in micro-channels on water ammonia side, as well as on the airside, and to the performance coefficient for various working conditions.


2017 ◽  
Vol 21 (3) ◽  
pp. 1251-1259 ◽  
Author(s):  
Chao Luo ◽  
Jun Zhao ◽  
Weibin Ma

A heat transfer experimental of vertical out-tube falling film was conducted with different inlet spray density of ammonia-water solution and inlet hot water temperature. The inlet liquid mass concentration was selected as 60% of ammonia. The experiments showed that the overall heat transfer coefficient increases with the increase of inlet spray density and a maximum overall heat transfer coefficient could be obtained in an optimum spray density of ammonia-water solution, ?, between 0.26 and 0.29 kg/ms. The generation of ammonia vapor outside the vertical falling film had a similar trend with the overall heat transfer coefficient basing on different spray density. The effect of hot water temperature difference, ?T, on overall heat transfer coefficient showed that ?T between 10 and 13 K is the optimum temperature difference of the vertical falling film generation


Author(s):  
Daniele Fiaschi ◽  
Giampaolo Manfrida ◽  
Lorenzo Talluri

The research deals with the possibility of effective exploitation of low temperature geothermal energy resources, which are generally much more widespread worldwide compared to conventional high temperature ones, typically available only in limited areas of the Earth. The basic idea is the application of an advanced binary cycle, only thermally coupled to the primary endogen heat source. The selected reference-power cycle is the well-known Kalina, which gives the possibility of optimizing the matching between heat capacities of the geothermal fluid (i.e. typically hot water or saturated steam) and the cycle working fluid, which is a non azeotropic NH3-H2O mixture with variable vaporization temperature at a fixed pressure. The heat transfer diagrams of the main Kalina heat exchangers, namely the condenser and the evaporator, are analysed with the aim of minimizing the irreversibilities related to the heat transfer. At different fixed NH3-H2O composition and condenser pressures, the evaporator pressure shows an efficiency optimizing value between 40 and 55 bar, generally increasing at higher condenser pressure. At fixed geothermal heat source temperature, condenser/evaporator pressures and working mixture composition, the cycle efficiency increases with increasing evaporator temperature, because of the reduction in the approach temperature difference between the geothermal and the working fluid. Higher efficiencies are found at higher NH3 concentrations. The proposed Water-Ammonia power cycle is further enhanced introducing a chiller (thus making the power cycle a CCP unit), thanks to the properties of the fluid mixture downstream the absorber, through an intermediate heat exchanger between the condenser and the evaporator. Mainly due to the better matching of heat capacities between the geothermal and the working fluid, the proposed power cycle offers the possibility of interesting improvements in electrical efficiency compared to traditionally proposed binary cycles using ORCs, at fixed temperature level of the heat source. In the investigated proposal, values of electric efficiency between 15 and 20% are found. An economic analysis is presented, demonstrating that the CCP system is able to produce electricity at decreased unit cost with respect to the power-only unit.


2020 ◽  
Vol 10 (18) ◽  
pp. 6532
Author(s):  
Mehri Akbari Kordlar ◽  
Florian Heberle ◽  
Dieter Brüggemann

The difference in heating or cooling to power ratio between required demands for district networks and the proposed tri-generation system is the most challenging issue of the system configuration and design. In this work, an adjustable, novel tri-generation system driven by geothermal resources is proposed to supply the thermal energies of a specific district network depending on ambient temperature in Germany. The tri-generation system is a combination of a modified absorption refrigeration cycle and a Kalina cycle using NH3-H2O mixture as a working fluid for the whole tri-generation system. A sensitive analysis of off-design conditions is carried out to study the effect of operational parameters on the system performances prior to optimizing its performance. The simulation show that the system is able to cover required heating and cooling demands. The optimization is applied considering the maximum exergy efficiency (scenario 1) and minimum total exergy destruction rate (scenario 2). The optimization results show that the maximum mean exergy efficiency in scenario 1 is achieved as 44.67% at the expense of 14.52% increase in the total exergy destruction rate in scenario 2. The minimum mean total exergy destruction rate in scenario 2 is calculated as 2980 kW at the expense of 8.32% decrease in the exergy efficiency in scenario 1.


Author(s):  
A. L. Kalina ◽  
H. M. Leibowitz

A new power generation technology often referred to as the Kalina cycle, is being developed as a direct replacement for the Rankine steam cycle. It may be applied to any thermal heat source, low or high temperature. Among several Kalina cycle variations there is one that is particularly well suited as a bottoming cycle for utility combined cycle applications. It is the subject of this paper. Using an ammonia/water mixture as the working fluid and a condensing system based on absorption refrigeration principles the Kalina bottoming cycle outperforms a triple pressure steam cycle by 16 percent. Additionally, this version of the Kalina cycle is characterized by an intercooling feature between turbine stages, diametrically opposite to normal reheating practice in steam plants. Energy and mass balances are presented for a 200 MWe Kalina bottoming cycle. Kalina cycle performance is compared to a triple pressure steam plant. At a peak cycle temperature of 950° F the Kalina plant produces 223.5 MW vs. 192.6 MW for the triple pressure steam plant, an improvement of 16.0 percent. Reducing the economizer pinch point to 15° F results in a performance improvement in excess of 30 percent.


Author(s):  
Meng Liu ◽  
Na Zhang

The authors proposed an ammonia-water cycle for power and refrigeration cogeneration which employs a splitting and absorption unit to adjust the desired solution concentrations. Energy efficiency and exergy efficiency of this cycle are found to be 27.3% and 57.6%, respectively, at the cycle highest heat addition conditions of 450°C /111bar. Nevertheless, a large exergy destruction takes place in the heat transfer and throttling process of this cycle. In this paper, three proposals are investigated to recover the energy of the heat transfer and throttling process. The weak ammonia/water solution is superheated by internal heat recovery, and then its energy is converted into useful outputs by: 1) sending the superheated ammonia-weak stream into the turbine, and the energy is directly converted into the power output: 2) and 3) introducing an ejector to the cycle, the superheated stream is used as the primary stream, the turbine exhaust and the evaporator outlet stream are used as the secondary stream, respectively, the energy is indirectly convert into power or refrigeration output. Simulations show that the three proposals enable the increments of 2.9%, 0.8% and 0.7%, respectively, in the exergy efficiency over the base cycle. Obviously, the first proposal has superiority in term of the thermal performance, while the latter two proposals have some advantages in respect of the operation, maintenance and capital costs.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4470
Author(s):  
Yikai Wang ◽  
Yifan He ◽  
Yulong Song ◽  
Xiang Yin ◽  
Feng Cao ◽  
...  

Given the large demand nowadays for domestic hot water, and its impact on modern building energy consumption, air source transcritical CO2 heat pumps have been extensively adopted for hot water production. Since their system efficiency is limited by significant irreversibility, a CO2-based mixture could offer a promising drop-in technology to overcome this deficiency without increasing system complexity. Although many CO2 blends have been studied in previously published literature, little has been presented about the CO2/R32 mixture. Therefore, a proposed mixture for use in transcritical CO2 heat pumps was analyzed using energy and exergy analysis. Results showed that the coefficient of performance and exergy efficiency variation displayed an “M” shape trend, and the optimal CO2/R32 mixture concentration was determined as 0.9/0.1 with regard to flammability and efficiency. The irreversibility of the throttling valve was reduced from 0.031 to 0.009 kW⋅kW−1 and the total irreversibility reduction was more notable with ambient temperature variation. A case study was also conducted to examine domestic hot water demand during the year. Pure CO2 and the proposed CO2 blend were compared with regard to annual performance factor and annual exergy efficiency, and the findings could provide guidance for practical applications in the future.


2019 ◽  
Vol 11 (12) ◽  
pp. 3374 ◽  
Author(s):  
Nima Javanshir ◽  
S. M. Seyed Mahmoudi ◽  
Marc A. Rosen

In this study, a cooling/power cogeneration cycle consisting of vapor-compression refrigeration and organic Rankine cycles is proposed and investigated. Utilizing geothermal water as a low-temperature heat source, various operating fluids, including R134a, R22, and R143a, are considered for the system to study their effects on cycle performance. The proposed cycle is modeled and evaluated from thermodynamic and thermoeconomic viewpoints by the Engineering Equation Solver (EES) software. Thermodynamic properties as well as exergy cost rates for each stream are found separately. Using R143a as the working fluid, thermal and exergy efficiencies of 27.2% and 57.9%, respectively, are obtained for the cycle. Additionally, the total product unit cost is found to be 60.7 $/GJ. A parametric study is carried out to determine the effects of several parameters, such as turbine inlet pressure, condenser temperature and pressure, boiler inlet air temperature, and pinch-point temperature difference, on the cycle performance. The latter is characterized by such parameters as thermal and exergy efficiencies, refrigeration capacity, produced net power rate, exergy destruction rate, and the production unit cost rates. The results indicate that the system using R134a exhibits the lowest thermal and exergy efficiencies among other working fluids, while the systems using R22 and R143a exhibit the highest energy and exergy efficiencies, respectively. The boiler and turbine contribute the most to the total exergy destruction rate.


Sign in / Sign up

Export Citation Format

Share Document