Investigation on flow and heat transfer of compact brazed plate heat exchanger with lung pattern

2020 ◽  
Vol 175 ◽  
pp. 115309 ◽  
Author(s):  
Barış Gürel ◽  
Volkan Ramazan Akkaya ◽  
Merve Göltaş ◽  
Çağla Nur Şen ◽  
Onur Vahip Güler ◽  
...  
2016 ◽  
Vol 37 (3) ◽  
pp. 19-29 ◽  
Author(s):  
Janusz T. Cieśliński ◽  
Artur Fiuk ◽  
Krzysztof Typiński ◽  
Bartłomiej Siemieńczuk

Abstract This study is focused on experimental investigation of selected type of brazed plate heat exchanger (PHEx). The Wilson plot approach was applied in order to estimate heat transfer coefficients for the PHEx passages. The main aim of the paper was to experimentally check ability of several correlations published in the literature to predict heat transfer coefficients by comparison experimentally obtained data with appropriate predictions. The results obtained revealed that Hausen and Dittus-Boelter correlations underestimated heat transfer coefficient for the tested PHEx by an order of magnitude. The Aspen Plate code overestimated heat transfer coefficient by about 50%, while Muley-Manglik correlation overestimated it from 1% to 25%, dependent on the value of Reynolds number and hot or cold liquid side.


2016 ◽  
Vol 831 ◽  
pp. 188-197 ◽  
Author(s):  
Janusz T. Cieśliński ◽  
Artur Fiuk ◽  
Wojciech Miciak ◽  
Bartłomiej Siemieńczuk

This study is focused on experimental investigation of a selected type of brazed plate heat exchanger (PHEx). The main aim of the paper was to experimentally check the ability of nanofluids to enhance the performance of PHEx. A typical water-Al2O3 nanofluid was tested and compared to that of the base fluid, i.e. water. Nanoparticles were tested at the concentration of 0.1% and 1% by weight. Impact of the 1 day and 3 days break of operation of the tested PHEx on its performance was of particular interest. Pressure drop in all runs was measured as well. The Wilson approach was applied in order to estimate heat transfer coefficients for the PHEx passages. It was observed, that addition of nanoparticles resulted in deterioration of an overall heat transfer coefficient for the selected PHEx and tested conditions, i.e. temperature range and Reynolds number. Moreover, substantial increase of pressure drop was recorded after each break of operation of the tested PHEx.


Sign in / Sign up

Export Citation Format

Share Document