saturated vapour
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 12)

H-INDEX

23
(FIVE YEARS 2)

Author(s):  
Yuri K. Suntsov ◽  
Nina S. Suntsova

The methods of theoretical description of the patterns of changes in thermodynamic properties depending on the composition and structure of solution components are a priority direction in the development of the theory of solutions. This article is devoted to the establishment of relationships between the thermodynamic properties, composition of solutions, and the structure of their components. The study of the thermodynamic properties of binary solutions formed by a common solvent (ethylbenzene) and substances of the homologous series of n-alkylbenzenes contributes to the establishment of the aforementioned relationships. In the production of ethylbenzene and its homologues, solutions based on n-alkylbenzenes are quite common. Alkylbenzenes are widely used in various fields of science and chemical technology as solvents, extractants, and plasticisers. Using the ebuliometric method, we measured the boiling points of solutions of four binary systems formed by ethylbenzene and n-alkylbenzenes under various pressure values. Compositions of equilibrium vapour phases of the binary systems were calculated using the obtained isotherms of saturated vapour pressure of the solutions. Using the Runge-Kutta method, the composition of the vapour phases of the solutions of the systems was calculated by the numerical integration of the Duhem–Margules equation on a computer. The obtained data on the vapour-liquid equilibrium became the basis for calculating the thermodynamic functions of the systems’ solutions. The Gibbs and Helmholtz energy values, the enthalpies of vaporisation and mixing, the internal energy, and entropy of solutions were calculated. The thermodynamic properties of the solutions were calculated using a comparison of the values baed on two standards: an ideal solution and an ideal gas. It was found that the values of the Helmholtz energy linearly depend on the molar mass of the substance (the number of –CH2– groups in a molecule) in the homologous series of n-alkylbenzenes. An increase in the Helmholtz energy values for n-alkylbenzenes in the homologous series is associated with a linear increase in the molar volume of liquid substances and an exponential decrease in the saturated vapour pressure of substances. For binary solutions of constant molar concentrations formed by ethylbenzene and n-alkylbenzenes, the Helmholtz energy linearly depends on the molar mass (number of –CH2– groups in the molecule) of n-alkylbenzene in the homologous series. We obtained an equation that makes it possible to predict the thermodynamic properties of solutions of binary systems with high accuracy. The equation accelerates the process of studying vapour-liquid phase equilibria and thermodynamic properties of solutions of binary systems by 300 times. The determined patterns confirm the hypothesis of the additive contribution of functional groups to the thermodynamic properties of solutions. This hypothesis underlies the statistical theory of group models of solutions. The thermodynamic patterns determined by this study can also be used to solve a wide range of technological issues in the chemical industry.


2021 ◽  
Vol 238 ◽  
pp. 01011
Author(s):  
Daniele Fiaschi ◽  
Giampaolo Manfrida ◽  
Barbara Mendecka ◽  
Moein Shamoushaki ◽  
Lorenzo Talluri

Emissions of contaminants and CO2 are becoming a relevant issue for the development of geothermal energy projects. Organic Rankine (ORC) Cycles present in this light particular appeal in the light of the possibility of total reinjection of the geothermal fluid resource including Non-Condensable Gases (NCGs). The Castelnuovo (IT) case study conditions are considered a saturated vapour resource at 10 bar pressure. The performance of the ORC cycle for power generation from this geothermal resource is evaluated through mass and energy balances, stepping up to exergy, Life Cycle Analysis (LCA) and Exergo-Environmental analyses (EEvA). The applied methodology allows to identify the most critical components of the system and to evaluate the environmental indicators of the system.


2020 ◽  
Author(s):  
Chong Shen Ng ◽  
Kai Leong Chong ◽  
Rui Yang ◽  
Mogeng Li ◽  
Roberto Verzicco ◽  
...  

The ambient conditions surrounding liquid droplets determine their growth or shrinkage. However, the precise fate of a liquid droplet expelled from a respiratory puff as dictated by its surroundings and the puff itself has not yet been fully quantified. From the view of airborne disease transmission, such as SARS-CoV-2, knowledge of such dependencies are critical. Here we employ direct numerical simulations (DNS) of a turbulent respiratory vapour puff and account for the mass and temperature exchange with respiratory droplets and aerosols. In particular, we investigate how droplets respond to different ambient temperatures and relative humidity (RH) by tracking their Lagrangian statistics. We reveal and quantify that in cold and humid environments, as there the respiratory puff is supersaturated, expelled droplets can first experience significant growth, and only later followed by shrinkage, in contrast to the monotonic shrinkage of droplets as expected from the classical view by William F. Wells (1934). Indeed, cold and humid environments diminish the ability of air to hold water vapour, thus causing the respiratory vapour puff to super-saturate. Consequently, the super-saturated vapour field drives the growth of droplets that are caught and transported within the humid puff. To analytically predict the likelihood for droplet growth, we propose a model for the axial RH based on the assumption of a quasi-stationary jet. Our model correctly predicts super-saturated RH conditions and is in good quantitative agreement with our DNS. Our results culminate in a temperature-RH map that can be employed as an indicator for droplet growth or shrinkage.Significance StatementInfluence of environmental conditions on airborne diseases transmission is an important issue, especially during the pandemic of COVID-19. Human-to-human transmission is mediated by the transport of virus-laden respiratory droplets. Here we investigate the problem from a fluid mechanics perspective by conducting numerical simulations to quantify the fate of respiratory droplets in a warm humid coughing puff under different ambient conditions. We reveal a non-intuitive regime with considerable growth of respiratory droplets, dominated by a super-saturated vapour field, preferentially occurring in cold and humid environments. We further propose a theoretical model that accurately predicts the condition for droplet growth. Our work should inform socializing policies and ventilation strategies for controlling indoor ambient conditions to mitigate dispersion of droplets from asymptomatic individuals.


Author(s):  
O. O. Ajileye ◽  
J. O. Otu ◽  
Najib Yusuf ◽  
O. O Akinola

The study employed Mass – Transfer Model (MTM) to estimate evapotranspiration (ET) from 12 selected locations spread across three climatic zones over Nigeria at intervals of 30 years (1988 and 2018) depicted by different solar cycles. Based on this finding the impacts of rainfall intensity on evapotranspiration patterns over Nigeria were investigated. Daily averaged values of wind speed at 2 m from soil, air temperature and relative humidity for 12 selected stations across Nigeria were employed for 1988 and 2018. The actual vapour pressure and saturated vapour pressure were estimated. A correlation between evapotranspiration with rainfall intensity was established to determine impacts of rainfall intensity on evapotranspiration patterns over Nigeria in solar maxima and minima scenarios. The results showed that ET was higher in 2018 than 1988 in 3 out of 4 stations in tropical monsoon; in tropical savannah and only Ibadan and Akure had a reduction in these values when 1988 was compared with 2018. Lowest values of ET was observed between August and October corresponding to the peak of rainy season. 7 stations out of 12 were influenced by solar minima phenomenon namely Port Harcourt, Owerri, Enugu, Ibadan, Minna, Borno and Gusau. The lowest values of ET were recorded at Calabar and Port Harcourt for both 1988 and 2018 while the highest values were observed at Borno for 1988 and Sokoto for 2018. Rainfall intensity had greater impacts on ET values in tropical monsoon than any other climatic zone in Nigeria.


Author(s):  
Y. S. Onifade ◽  
V. B. Olaseni

The amount of water vapour present in the air is indirectly expressed through vapour pressure and for any given temperature there is a limit for water vapour that can be held by air. If the air is holding water vapour which is equal to the maximum that it can hold at a given temperature, then the air is said to be saturated. Hydrometeorological study was carried out using vapour pressure (VP) and maximum temperature data for Warri through 2009 – 2018 (10 years) Saturation Vapour Pressure (SVP) were estimated. A graph is established showing the relationship between the Saturation Vapour Pressure (SVP) and the temperature also the graphical representation showing variational trend of SVP and VP were plotted. The study shows the dew point (Td) ranging from 29.9°C to 31.5°C which explained the likely rainfall at any temperature below Td. The study also confirmed increase in SVP bringing increase in Temperature and the variational trend shows the same pattern all through.


2019 ◽  
Vol 31 (3) ◽  
pp. 157-162 ◽  
Author(s):  
Lubomir Livovsky ◽  
Alena Pietrikova

Purpose The purpose of this paper is to investigate measurement and regulation of saturated vapour height level in vapour phase soldering (VPS) chamber based on parallel plate capacitor and retaining a stable saturated vapour level above the boiling fluid, regardless of the quantity and size of assembled components. Design/methodology/approach Development and realisation of capacitance sensor that sensitively senses the maximum height level of saturated vapour above the boiling fluid in the VPS chamber was achieved. Methodology of measurement is based on capacitor change from single air to a parallel plate, filled with two dielectric environments in a stacked configuration: condensed fluid and vapour (air). Findings An easy air plate capacitor immersed in the saturated vapour above the boiling fluid can serve as a parallel plate capacitor owing to the conversion of the air to the parallel plate capacitor. A thin film of fluid between the two capacitor plates corresponds to the height of the saturated vapour, which changes the capacity of the parallel plate capacitor. Originality/value Introducing the capacitive sensor directly into the VPS work space allows to achieve a constant height level of saturated vapour. Based on the capacity change, it is possible to control the heating power. There is a lack of information regarding measurement of stable height of vapour in the industry, and the present article shows how to easily improve the way to regulate the bandwidth of saturated vapour in the VPS process.


Sign in / Sign up

Export Citation Format

Share Document