vapour condensation
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 2)

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 105
Author(s):  
Ibrahim Al-Helal ◽  
Abdullah Alsadon ◽  
Samy Marey ◽  
Abdullah Ibrahim ◽  
Mohamed Shady ◽  
...  

In arid regions, drastic seasonal variations in the climatic parameters are common; thus, a high potential of geothermal effects for heating/cooling applications is expected. However, such applications are very limited in these regions due to the lack of information about underground temperature profiles of the surface and shallow zones. Therefore, this study aims to (i) measure the underground temperature profile for one year to determine the optimum depth for burying EAHE pipes; (ii) examine the possibility of water vapour condensation occurring in the buried EAHE pipes, if the air let into the pipes was humid; and (iii) quantify the maximum cooling/heating capacity, if an EAHE was implemented. The results show that a 3-meter depth is optimal to bury EAHE pipes, where the ground temperature is 32 °C in the summer and 29 °C in the winter. These temperatures would provide a maximum cooling/heating capacity of 1000/890 MJ day−1 for each 1 m3 of humid air exhausted from a greenhouse. If the EAHE were to operate in a closed loop with a greenhouse, the condensation of water vapour in the EAHE pipes would be impossible during the cooling process. The results of this study are useful for designers using geothermal effects for indoor space cooling and heating in arid regions.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012122
Author(s):  
H Teufl ◽  
M Schuss ◽  
A Mahdavi

Abstract Radiant cooling systems are being increasingly promoted because of their energy efficient operation as well as their potential to improve occupants’ thermal comfort due to a draft-free cooling process. This paper focuses on a specific radiant cooling approach, which was introduced in previous contributions. This approach involves the positioning of relatively small-sized vertical radiant panels in the close proximity to occupants. Furthermore, the panels incorporate drainage systems or collection elements to accommodate, if needed, water vapour condensation. Consequently, the surface temperature of the radiant panels does not need to stay above the dew point temperature. We present the outcome of a preliminary experimental investigation of such a personal radiant cooling system. In this context, prototypical radiant panels were installed in a laboratory and multiple experiments were conducted. The uniformity level of the panels’ surface temperature distribution was documented. Moreover, near-panel air flow velocities were measured at several positions. Likewise, the formation of condensed water on panels was observed for different panel surface temperatures, room temperatures, and room humidity levels. The results of the preliminary laboratory investigation do not point to any risk of draft or turbulence discomfort.


2021 ◽  
pp. 1420326X2110408
Author(s):  
Jiying Liu ◽  
Moon Keun Kim ◽  
Jelena Srebric

The study investigates a hybrid radiant cooling system's potential to achieve thermal comfort. The hybrid radiant cooling (HRC) system combines the best features of a typical all-air and conventional chilled radiant cooling system. An HRC system presents the advantages to (a) reduce vapour condensation and to (b) adjust the cooling output by using an Airbox convector. The three systems perceive thermal comfort in the predicted mean vote (PMV) between –0.5 and +0.5 at 25 and 27°C. In the room condition at 31°C, the all-air system has a lower thermal comfort level because the elevated airspeed is less effective when the mean radiant temperature (MRT) is low. This study suggests a cooling strategy to maximize the thermal comfort level by effectively utilizing the HRC in extreme conditions without extra cooling sources. When the designed set point indoor temperature is 25°C, the Airbox convector of the HRC fan can be off. However, if the indoor air temperature increases above 25°C, an occupant can activate the Airbox convector; the actual thermal output of HRC is increased, and the elevated airspeed can reduce the predicted percentage dissatisfied (PPD) level. Even in an extreme indoor thermal condition at 31°C, the HRC minimizes the PPD level.


2021 ◽  
Vol 134 ◽  
pp. 103473
Author(s):  
Jafar Mahmoudian ◽  
Federico Mazzelli ◽  
Adriano Milazzo ◽  
Ray Malpress ◽  
David R. Buttsworth

2021 ◽  
Vol 283 ◽  
pp. 128755
Author(s):  
Bratislav Lukić ◽  
Alessandro Tengattini ◽  
Frédéric Dufour ◽  
Matthieu Briffaut

Energy ◽  
2020 ◽  
Vol 208 ◽  
pp. 118388
Author(s):  
Filip Toman ◽  
Petr Kracík ◽  
Jiří Pospíšil ◽  
Michal Špiláček

2020 ◽  
Vol 7 (1) ◽  
pp. 143-148 ◽  
Author(s):  
Silvia Varagnolo ◽  
Jaemin Lee ◽  
Houari Amari ◽  
Ross A. Hatton

Patterning evaporated silver and copper films without metal removal using extremely thin printed organofluorine films to modulate metal vapour condensation.


Sign in / Sign up

Export Citation Format

Share Document