Gamma radiation-induced thermoluminescence, trace element and paramagnetic defect of quartz from the Sambagawa metamorphic belt, Central Shikoku, Japan

2017 ◽  
Vol 120 ◽  
pp. 30-39 ◽  
Author(s):  
T. Chuenpee ◽  
O. Nishikawa ◽  
Y. Kon ◽  
K. Ninagawa ◽  
S. Toyoda ◽  
...  
1994 ◽  
Vol 20 (16) ◽  
pp. 2493-2508 ◽  
Author(s):  
E. Ciranni Signoretti ◽  
L. Valvo ◽  
P. Fattibene ◽  
S. Onori ◽  
M. Pantaloni

Genetics ◽  
2003 ◽  
Vol 164 (1) ◽  
pp. 323-334
Author(s):  
S B Preuss ◽  
A B Britt

Abstract Although it is well established that plant seeds treated with high doses of gamma radiation arrest development as seedlings, the cause of this arrest is unknown. The uvh1 mutant of Arabidopsis is defective in a homolog of the human repair endonuclease XPF, and uvh1 mutants are sensitive to both the toxic effects of UV and the cytostatic effects of gamma radiation. Here we find that gamma irradiation of uvh1 plants specifically triggers a G2-phase cell cycle arrest. Mutants, termed suppressor of gamma (sog), that suppress this radiation-induced arrest and proceed through the cell cycle unimpeded were recovered in the uvh1 background; the resulting irradiated plants are genetically unstable. The sog mutations fall into two complementation groups. They are second-site suppressors of the uvh1 mutant's sensitivity to gamma radiation but do not affect the susceptibility of the plant to UV radiation. In addition to rendering the plants resistant to the growth inhibitory effects of gamma radiation, the sog1 mutation affects the proper development of the pollen tetrad, suggesting that SOG1 might also play a role in the regulation of cell cycle progression during meiosis.


1998 ◽  
Vol 238 (1-2) ◽  
pp. 43-51 ◽  
Author(s):  
E. M. Abdel-Bary ◽  
A. M. Dessouki ◽  
E. M. El-Nesr ◽  
M. M. Hassan

Head & Neck ◽  
2004 ◽  
Vol 26 (7) ◽  
pp. 612-618 ◽  
Author(s):  
Rong Zheng ◽  
Kristina R. Dahlstrom ◽  
Qingyi Wei ◽  
Erich M. Sturgis

2002 ◽  
Vol 93 (2) ◽  
pp. 101-110 ◽  
Author(s):  
Peter D. Clift ◽  
Amy E. Draut ◽  
Robyn Hannigan ◽  
Graham Layne ◽  
Jerzy Blusztajn

The Rosroe Formation comprises a series of Lower Ordovician (Llanvirn) conglomerates and sandstones, that lies on the southern limb of the South Mayo Trough, within the Iapetus Suture Zone of western Ireland. Trace element chemistry of granite boulders within the formation indicates a continental, rather than a volcanic arc character that can be correlated to latest Precambrian granites within the Dalradian Metamorphic Block, part of the deformed Laurentian margin. A minority of the clasts may correlate with syn-collisional granites, similar to, but older than, the Oughterard Granite of Connemara. Pb isotope compositions of K-feldspar grains within the sandstones, measured by both ion microprobe and conventional mass spectrometry, show a clear Laurentian affinity, albeit with greater source variability in the sand grains compared to a limited range in the proximal boulders. Palaeo-current indicators demonstrate dominant derivation from the NE, with a significant axial E–W flow. We propose that the Rosroe Formation records unroofing of a rapidly exhuming Dalradian metamorphic belt in North Mayo, following extensional collapse of the Grampian Orogen starting at ˜468 Ma, with minor input from a southerly arc source. The lack of metamorphic input from the S until deposition of the Derryeeny Conglomerate argues that the Connemara terrane was not positioned S of South Mayo Trough through strike-slip faulting until after the end of Rosroe sedimentation (460–443 Ma).


Sign in / Sign up

Export Citation Format

Share Document