rubber powder
Recently Published Documents


TOTAL DOCUMENTS

346
(FIVE YEARS 112)

H-INDEX

21
(FIVE YEARS 6)

2021 ◽  
Vol 13 (24) ◽  
pp. 13536
Author(s):  
Qingwei Ma ◽  
Zhongyin Guo ◽  
Ping Guo ◽  
Fayong Yang ◽  
Haibin Li

A stabilized rubber powder-modified asphalt was provided for the field of rubber asphalt, and the optimal blending amount of stable rubber powder was determined from indicators, such as penetration, penetration index, ductility, softening point, and viscosity at 135 °C. The viscoelastic curve was measured, and the thermal storage stability test showed that the stabilized rubber powder-modified asphalt has significant thermal storage stability. The specific surface area, scanning electron microscope, and differential scanning calorimeters were used to analyze the dispersion state and aggregation state of the rubber powder particles in the stabilized rubber powder-modified asphalt, etc. The swelling state and reaction mechanism of the rubber powder in the stabilized rubber powder-modified asphalt have been characterized. The results show that the temperature sensitivity of the asphalt was improved after the stabilized rubber powder was added. The content of the stabilized rubber powder was determined to be 30%, which effectively reduces the viscosity at 135 °C, and the workability is improved; the impact of rubber powder-modified asphalt was less than that of ordinary rubber asphalt, but the temperature should be strictly controlled to ensure the viscosity of stable rubber powder-modified asphalt; the specific surface area comparison test shows that the stable rubber powder has better performance than ordinary rubber powder and asphalt matrix. The advantage of having a larger contact area enhances the compatibility of stabilized rubber powder with asphalt; scanning electron microscopy and differential scanning calorimeters test results show that the stable rubber powder-modified asphalt is mainly based on the compatibility mechanism, and a series of processes, such as oil absorption swelling-high temperature shear-compatible dispersion, occur.


2021 ◽  
Vol 312 ◽  
pp. 125430
Author(s):  
Zhenyu Huang ◽  
Tingting Liang ◽  
Bo Huang ◽  
Yingwu Zhou ◽  
Jianqiao Ye

2021 ◽  
Vol 309 ◽  
pp. 125169
Author(s):  
Wenlixia Jiang ◽  
Han Zhu ◽  
Sadi Ibrahim Haruna ◽  
Bo Zhao ◽  
Jianwen Shao ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1321
Author(s):  
Sanqiang Yang ◽  
Shuang Sun ◽  
Lusheng Qin ◽  
Qian Li

The applications of rubber-modified asphalt and its mixtures have received widespread attention due to the environmental and economic benefits of such materials. However, studies on the structural performance of rubber-powder-modified asphalt pavement are only concentrated on a certain scale, leading to research on the structural performance of pavement mostly focusing on mechanical responses at a macro scale. Therefore, the present study adopts the concept of multi-scale research to analyze the viscoelasticity of high-dosage-modified asphalt and its mixtures at a microscopic scale from the perspective of meso-mechanical analysis. In this paper, to ensure the overall durability of a structure, the effective asphalt film thickness and coarse aggregate angularity index of the test material were measured first. The viscoelasticity of asphalt modified with rubber powder was then analyzed using a Brinell viscosity test, scanning electron microscopy (SEM), and a dynamic shear rheometer (DSR). We determined the optimal amount of rubber powder to be 30%. A universal testing machine was used to study the influence of different temperatures and loading frequencies on the viscoelastic properties of different asphalt mixtures. Research on the dynamic modulus found that the incorporation of rubber powder increases the elastic properties of the mixture such that the rubber-powder-modified asphalt mixture had a higher dynamic modulus. At the same time, the high-dosage-modified asphalt mixture was found to be closer to an elastomer under a low temperature and high frequency. At a high temperature and low frequency, the asphalt mixture changed into a viscoelastic body whose viscous properties were mainly affected by the asphalt binder. The addition of rubber powder changed the temperature sensitivity of the asphalt and then affected the viscoelastic properties of the asphalt mixture.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1323
Author(s):  
Dongqing Zhong ◽  
Shuguang Wang ◽  
Yu Gao ◽  
Luming Wang ◽  
Yanbo Li ◽  
...  

In the present study, three modification methods, including water washing, sodium hydroxide (NaOH), and styrene–acrylic emulsion, were used to modify waste rubber powders. The influence of rubber powders on the mechanical properties and frost resistance of magnesium oxychloride cement was examined, and the different modification mechanisms were also analyzed. Based on the analysis of hydrophilic properties after modification, styrene–acrylic emulsion achieved the best modification effect, while water washing produced the least modification effect; regarding mechanical properties, magnesium oxychloride cement mixed with NaOH modified rubber powders achieved the best modification effect, in which the 28 d flexural strength and compressive strength increased by 41.2% and 59.6%, respectively. During the freeze-thaw cycles, the mass loss of specimens was reduced with an increase in the content of rubber powders. In addition, after 300 cycles, the relative dynamic modulus of elasticity of the blank sample was about 28.12%, while that of the magnesium oxychloride cement mixed with NaOH modified rubber powders was approximately 42.38%. In general, the properties of the modified rubber powder–magnesium oxychloride cement composite material can meet the requirements for engineering materials, which provides a theoretical basis and technical support for the application of rubberized magnesium oxychloride cement.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
S. Chen ◽  
J. Cao ◽  
C. f. Zheng ◽  
X. D. Guo

In recent years, due to the development of the automobile industry, there are more and more waste car tires, and the reuse of waste tires has become an urgent problem to be solved. In this study, the crushed rubber of waste automobile tires is used to modify asphalt to prepare rubber-modified asphalt, which can not only solve the problem of using waste tires but also effectively improve the performance of asphalt pavement. This study defines four modified asphalts with different rubber powder content, which are defined as 1#, 2#, 3#, and 4#, respectively. The performance difference between the four modified asphalts and the base asphalt was compared through experiments to illustrate the advantages of rubber-modified asphalt. The four selected rubber asphalts and base asphalt are subjected to the viscous toughness test, apparent viscosity test, DSR test, and BBR test to determine the high- and low-temperature characteristics of rubber asphalt. The analysis of experimental data shows that rubber-modified asphalt can effectively improve the low-temperature performance of the asphalt, make the asphalt have better toughness, and also improve the high-temperature shear resistance of the asphalt. Finally, it is determined that adding 10% rubber powder to the base asphalt has the best effect.


Sign in / Sign up

Export Citation Format

Share Document