scholarly journals Increased soil nitrogen supply enhances root-derived available soil carbon leading to reduced potential nitrification activity

2021 ◽  
Vol 159 ◽  
pp. 103842
Author(s):  
Andrea Leptin ◽  
David Whitehead ◽  
Craig R. Anderson ◽  
Keith C. Cameron ◽  
Niklas J. Lehto
2010 ◽  
Vol 18 (6) ◽  
pp. 1157-1162
Author(s):  
Shu-Jun ZHAO ◽  
Jia-Fu YUAN ◽  
Xin-Ran ZHANG ◽  
Xiang-Yu XU ◽  
You-Sheng XIONG ◽  
...  

2020 ◽  
Vol 117 (3) ◽  
pp. 351-365
Author(s):  
J. Pijlman ◽  
G. Holshof ◽  
W. van den Berg ◽  
G. H. Ros ◽  
J. W. Erisman ◽  
...  

Ecology ◽  
1982 ◽  
Vol 63 (5) ◽  
pp. 1277-1284 ◽  
Author(s):  
Edward K. Christie ◽  
James K. Delting

2020 ◽  
Author(s):  
Joann Whalen ◽  
Hicham Benslim

<p>Earthworms create hotspots that support microbial diversity and activity in soil. These hotspots may be internal to the earthworm, such as in their intestinal tract, or external to the earthworm in the biopores, casts and middens they create on the soil surface and within the soil profile. This presentation summarizes some of the key hotspots associated with earthworms, and how the biostimulated microbial community in these areas contributes to soil nitrogen cycling. We will present observations about the diversity and activity of nitrogen-cycling microorganisms that live within the earthworm and in its built environments, as well as the population- and community-level contributions of earthworms to denitrification, nitrogen mineralization, and the soil nitrogen supply in temperate agroecosystems.</p>


2002 ◽  
Vol 139 (2) ◽  
pp. 115-127 ◽  
Author(s):  
MARTYN SILGRAM ◽  
BRIAN J. CHAMBERS

The effects of straw incorporation (early and late cultivation) and straw burning were contrasted in a split-plot study examining the impact of long-term straw residue management, and six fertilizer nitrogen (N) rates on soil mineral nitrogen, crop fertilizer N requirements and nitrate leaching losses. The experiments ran from 1984 to 1997 on light-textured soils at ADAS Gleadthorpe (Nottinghamshire, UK) and Morley Research Centre (Norfolk, UK).Soil incorporation of the straw residues returned an estimated 633 kg N/ha at Gleadthorpe and 429 kg N/ha at Morley on the treatment receiving 150 kg/ha per year fertilizer N since 1984. Straw disposal method had no consistent effect on grain and straw yields, crop N uptake, or optimal fertilizer N rates. In every year there was a positive response (P<0·001) to fertilizer N in straw/grain yields, N contents and crop N offtakes at both sites. Nitrate leaching losses were slightly reduced by less than 10 kg N/ha where straw residues had been incorporated, while fertilizer N additions increased nitrate leached at both sites.At both sites there was a consistent effect (P<0·001) of straw disposal method on autumn soil mineral N, with values following the pattern burn>early incorporate>late plough. The incorporation of straw residues induced temporary N immobilization compared with the treatment where straw was burnt, while the earlier timing of tillage on the incorporate treatment resulted in slightly more mineral N compared with the later ploughed treatment. Fertilizer N rate increased (P<0·001) soil mineral nitrogen at both sites. At Morley, there was more organic carbon in the plough layer where straw had been incorporated (mean 1·09 g/100 g) rather than burnt (mean 0·89 g/100 g), and a strong positive relationship between organic carbon and fertilizer N rate (r2=93·2%, P<0·01). There was a detectable effect of fertilizer N on readily mineralizable N in the plough layer at both Gleadthorpe (P<0·001) and Morley (P<0·05). At Morley, there was a consistent trend (P=0·06) for readily mineralizable N to be higher where straw had been incorporated rather than burnt, indicating that ploughing-in residues may contribute to soil nitrogen supply over the longer term.


Author(s):  
Matthew Norris ◽  
Paul R. Johnstone ◽  
Dirk F. Wallace ◽  
Nathan P. Arnold ◽  
Mike Parker

Sign in / Sign up

Export Citation Format

Share Document