Stearic acid coating on circulating fluidized bed combustion fly ashes and its effect on the mechanical performance of polymer composites

2013 ◽  
Vol 279 ◽  
pp. 109-115 ◽  
Author(s):  
Nina Yao ◽  
Ping Zhang ◽  
Lixian Song ◽  
Ming Kang ◽  
Zhongyuan Lu ◽  
...  
Author(s):  
Y. Wu ◽  
J.-P. Charland ◽  
E. J. Anthony ◽  
L. Jia

Six different fly ashes from commercial-scale circulating fluidized bed combustion (CFBC) boilers and the carbon-free residues of these ashes were hydrated with liquid water or steam to determine whether hydration could improve sorbent utilization in these samples under fluidized bed combustion conditions. After hydration, for two fly ashes (FA1 and FA6) and three carbon-free samples (FA2-A, FA3-A and FA6-A), the capacity for taking up SO2 showed limited or medium improvement; however, hydration was evidently ineffective in reactivating the remaining samples. It is believed that the reason samples FA6 and FA6-A show a relatively high improvement in SO2 absorption capacity is that these ashes had a larger particle size than any of the other fly ashes examined here. In general, even for these “reactivatable” fly ashes, reactivation by hydration with either liquid water or steam appeared far less promising than for bed ashes, which have been shown to exhibit significant improvement in sulphur capture during re-sulphation. Hydration, whether by steam or liquid water, is not recommended for fly ash, which has a very limited residence time in the boiler due to its small particle size and instead this paper recommends alternative strategies.


Fuel ◽  
2015 ◽  
Vol 146 ◽  
pp. 51-55 ◽  
Author(s):  
M. Antonia López-Antón ◽  
D. Alan Spears ◽  
Mercedes Díaz-Somoano ◽  
Luis Diaz ◽  
M. Rosa Martínez-Tarazona

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3106
Author(s):  
Tomasz Kalak ◽  
Kinga Marciszewicz ◽  
Joanna Piepiórka-Stepuk

Recently, more and more attention has been paid to the removal of nickel ions due to their negative effects on the environment and human health. In this research, fly ash obtained as a result of incineration of municipal sewage sludge with the use of circulating fluidized bed combustion (CFBC) technology was used to analyze the possibility of removing Ni(II) ions in adsorption processes. The properties of the material were determined using analytical methods, such as SEM-EDS, XRD, BET, BJH, thermogravimetry, zeta potential, SEM, and FT-IR. Several factors were analyzed, such as adsorbent dose, initial pH, initial concentration, and contact time. As a result of the conducted research, the maximum sorption efficiency was obtained at the level of 99.9%. The kinetics analysis and isotherms showed that the pseudo-second order equation model and the Freundlich isotherm model best suited this process. In conclusion, sewage sludge fly ash may be a suitable material for the effective removal of nickel from wastewater and the improvement of water quality. This research is in line with current trends in the concepts of circular economy and sustainable development.


Sign in / Sign up

Export Citation Format

Share Document