Highly active surface-enhanced Raman scattering (SERS) substrates based on gold nanoparticles infiltrated into SiO2 inverse opals

2016 ◽  
Vol 387 ◽  
pp. 595-602 ◽  
Author(s):  
Bright Ankudze ◽  
Anish Philip ◽  
Tuula T. Pakkanen ◽  
Antti Matikainen ◽  
Pasi Vahimaa
2009 ◽  
Vol 20 (32) ◽  
pp. 325705 ◽  
Author(s):  
Abhijit Biswas ◽  
Ilker S Bayer ◽  
Daminda H Dahanayaka ◽  
Lloyd A Bumm ◽  
Zhongrui Li ◽  
...  

Nanoscale ◽  
2014 ◽  
Vol 6 (10) ◽  
pp. 5099-5105 ◽  
Author(s):  
Hongmei Liu ◽  
Xinping Zhang ◽  
Tianrui Zhai ◽  
Thomas Sander ◽  
Limei Chen ◽  
...  

Highly homogeneous surface-enhanced Raman scattering substrates were produced on the centimeter scale by annealing solution-processed gold nanoparticles into plasmonic nanoislands.


2005 ◽  
Vol 59 (4) ◽  
pp. 401-409 ◽  
Author(s):  
Daniel M. Kuncicky ◽  
Steven D. Christesen ◽  
Orlin D. Velev

Highly active and stable substrates for surface-enhanced Raman scattering (SERS) can be fabricated by using colloidal crystals to template gold nanoparticles into structured porous films. The structure-dependent performance of these SERS substrates was systematically characterized with cyanide in continuous flow microfluidic chambers. A matrix of experiments was designed to isolate the SERS contributions arising from nano- and microscale porosity, long-range ordering of the micropores, and the thickness of the nanoparticle layer. The SERS results were compared to the substrate structure observed by scanning electron microscopy (SEM) and optical microscopy to correlate substrate structure to SERS performance. The Raman peak intensity was consistently highest for nanoporous substrates with three-dimensionally ordered micropores, and decreases if the micropores are not ordered or not templated. Removing the nanoscale porosity by fusion of the nanoparticles (without removing the large micropores) leads to a drastic plunge in substrate performance. The peak intensity does not strongly correlate to the thickness of the nanoparticle films. The results make possible the efficient controlled fabrication of stable, reproducible, and highly active substrates for SERS based chemical sensors with continuous sampling.


RSC Advances ◽  
2014 ◽  
Vol 4 (38) ◽  
pp. 19654-19657 ◽  
Author(s):  
Haibin Tang ◽  
Guowen Meng ◽  
Qing Huang ◽  
Chuhong Zhu ◽  
Zhulin Huang ◽  
...  

Large-scale ordered urchin-like Au-nanoparticles decorated Ag-nanohemisphere nanodot arrays show highly active surface-enhanced Raman scattering effect for rapid recognition of PCB-3.


2015 ◽  
Vol 119 (31) ◽  
pp. 17790-17799 ◽  
Author(s):  
Alfred J. Baca ◽  
Joshua Baca ◽  
Jason M. Montgomery ◽  
Lee R. Cambrea ◽  
Peter Funcheon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document