Isolation of peptide hormones with pleiotropic activities in the freshwater crab, Oziotelphusa senex senex

Aquaculture ◽  
2006 ◽  
Vol 259 (1-4) ◽  
pp. 424-431 ◽  
Author(s):  
P. Ramachandra Reddy ◽  
P. Sreenivasula Reddy
2015 ◽  
Vol 58 ◽  
pp. 115-131 ◽  
Author(s):  
Ayane Motomitsu ◽  
Shinichiro Sawa ◽  
Takashi Ishida

The ligand–receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone–receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions.


2017 ◽  
Vol 23 (1) ◽  
Author(s):  
C.A. JAWALE

Ovarian maturation by neurosecretory cells in the brain of freshwater crab, Barytelphusa cunicularis have been examined. The histological scrutiny of the brain of Barytelphusa cunicularis related with three types (A, B and C) of neurosecretory cells, which are classified on the basis of size, shape and tinctorial characters. All these types of cells marked annual cyclic changes of cytoplasmic material in association with ovarian cycle. The activity of these cells has been correlated with the ovarian cycle. They are distinguishable by their size, nature locations, shape, nucleus position, cell measure and the secretory product in the cytoplasm. The result indicates that the neurosecretory A, B and C cells of the brain seen involved in the process of mating ovulation. The neurosecretory materials staining intensity index of these cells is described.


1966 ◽  
Vol 51 (1) ◽  
pp. 88-94 ◽  
Author(s):  
A. Villanueva ◽  
S. J. H. Ashcroft ◽  
J. P. Felber

ABSTRACT The synthetic ACTH peptides β1–39 and β1–24 stimulated lipolysis as determined by the rat epididymal fat pad in vitro. The stimulating effect of these peptides was diminished by prior incubation of the peptides with antibodies produced by the guinea-pig against ACTH. The stimulating effect of these hormones was also diminished by the double antibody system used in the radio-immunoassay of ACTH and other peptide hormones, in which incubation with antiserum is followed by precipitation of the antigen-antibody complex by rabbit anti-guinea-pig-γ-globulin.


Sign in / Sign up

Export Citation Format

Share Document