peptide hormone
Recently Published Documents


TOTAL DOCUMENTS

1090
(FIVE YEARS 249)

H-INDEX

69
(FIVE YEARS 9)

Author(s):  
Francesca Torrini ◽  
Laura Caponi ◽  
Andrea Bertolini ◽  
Pasquale Palladino ◽  
Francesca Cipolli ◽  
...  

AbstractAn original biomimetic enzyme-linked immunoassay (BELISA) to target the small peptide hormone gonadorelin is presented. This peptide has been recently listed among the substances banned in sports by the World Antidoping Agency (WADA) since its misuse by male athletes triggers testosterone increase. Hence, in response to this emerging issue in anti-doping controls, we proposed BELISA which involves the growth of a polynorepinephrine (PNE)–based molecularly imprinted polymer (MIP) directly on microwells. PNE, a polydopamine (PDA) analog, has recently displayed impressive performances when it was exploited for MIP preparation, giving even better results than PDA. Gonadorelin quantification was accomplished via a colorimetric indirect competitive bioassay involving the competition between biotinylated gonadorelin linked to the signal reporter and the unlabeled analyte. These compete for the same MIP binding sites resulting in an inverse correlation between gonadorelin concentration and the output color signal (λ = 450 nm). A detection limit of 277 pmol L−1 was achieved with very good reproducibility in standard solutions (avCV% = 4.07%) and in urine samples (avCV% = 5.24%). The selectivity of the assay resulted adequate for biological specimens and non-specific control peptides. In addition, the analytical figures of merit were successfully validated by mass spectrometry, the reference anti-doping benchtop platform for the analyte. BELISA was aimed to open real perspectives for PNE-based MIPs as alternatives to antibodies, especially when the target analyte is a poorly or non-immunogenic small molecule, such as gonadorelin. Graphical abstract


Author(s):  
Favian Liu ◽  
Negar Ghasem Ardabili ◽  
Izaiah Brown ◽  
Harmain Rafi ◽  
Clarice Cook ◽  
...  

Abstract Carbon fiber microelectrodes (CFMEs) have been used to detect neurotransmitters and other biomolecules using fast-scan cyclic voltammetry (FSCV) for the past few decades. This technique measures neurotransmitters such as dopamine and, more recently, physiologically relevant neuropeptides. Oxytocin, a pleiotropic peptide hormone, is physiologically important for adaptation, development, reproduction, and social behavior. This neuropeptide functions as a stress-coping molecule, an anti-inflammatory agent, and serves as an antioxidant with protective effects especially during adversity or trauma. Here, we measure tyrosine using the Modified Sawhorse Waveform (MSW), enabling enhanced electrode sensitivity for the amino acid and oxytocin peptide. Applying the MSW, decreased surface fouling and enabled codetection with other monoamines. As oxytocin contains tyrosine, the MSW was also used to detect oxytocin. The sensitivity of oxytocin detection was found to be 3.99 ± 0.49 nA/µM, (n=5). Additionally, we demonstrate that applying the MSW on CFMEs allows for real time measurements of exogenously applied oxytocin on rat brain slices. These studies may serve as novel assays for oxytocin detection in a fast, sub-second timescale with possible implications for in vivo measurements and further understanding of the physiological role of oxytocin.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Julien Gronnier ◽  
Christina M Franck ◽  
Martin Stegmann ◽  
Thomas A DeFalco ◽  
Alicia Abarca ◽  
...  

Spatial partitioning is a propensity of biological systems orchestrating cell activities in space and time. The dynamic regulation of plasma membrane nano-environments has recently emerged as a key fundamental aspect of plant signaling, but the molecular components governing it are still mostly unclear. The receptor kinase FERONIA (FER) controls ligand-induced complex formation of the immune receptor kinase FLAGELLIN SENSING 2 (FLS2) with its co-receptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1), and perception of the endogenous peptide hormone RAPID ALKALANIZATION FACTOR 23 (RALF23) by FER inhibits immunity. Here, we show that FER regulates the plasma membrane nanoscale organization of FLS2 and BAK1. Our study demonstrates that akin to FER, leucine-rich repeat (LRR) extensin proteins (LRXs) contribute to RALF23 responsiveness, regulate BAK1 nanoscale organization and immune signaling. Furthermore, RALF23 perception leads to rapid modulation of FLS2 and BAK1 nanoscale organization, and its inhibitory activity on immune signaling relies on FER kinase activity. Our results suggest that perception of RALF peptides by FER and LRXs actively modulates plasma membrane nanoscale organization to regulate cell surface signaling by other ligand-binding receptor kinases.


2022 ◽  
Author(s):  
Yunseok Heo ◽  
Eojin Yoon ◽  
Ye-Eun Jeon ◽  
Ji-Hye Yun ◽  
Naito Ishimoto ◽  
...  

Somatostatin is a peptide hormone regulating endocrine systems through binding to G-protein-coupled somatostatin receptors. somatostatin receptor 2 (SSTR2) is one of the human somatostatin receptors and highly implicated in cancers and neurological disorders. Here, we report the high resolution cryo-EM structure of full-length human SSTR2 bound to the agonist somatostatin (SST-14) complex with inhibitory G (Gi) proteins. Our structure shows that seven transmembrane helices form a deep pocket for ligand binding and that the highly conserved Trp-Lys motif of SST-14 positions at the bottom of the pocket. Furthermore, our sequence analysis combined with AlphaFold modeled structures of other SSTR isoforms provide how SSTR family proteins specifically interact with their cognate ligands. This work provides the first glimpse into the molecular recognition of somatostatin receptor and crucial resource to develop therapeutics targeting somatostatin receptors.


2022 ◽  
Vol 189 (1) ◽  
Author(s):  
Zahra Fattahi ◽  
Mohammad Reza Tohidkia ◽  
Ahmad Yari Khosroushahi

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7599
Author(s):  
Emily S. Murzinski ◽  
Ishika Saha ◽  
Hui Ding ◽  
David Strugatsky ◽  
Ryan A. Hollibaugh ◽  
...  

Ghrelin is a 28-residue peptide hormone produced by stomach P/D1 cells located in oxyntic glands of the fundus mucosa. Post-translational octanoylation of its Ser-3 residue, catalyzed by MBOAT4 (aka ghrelin O-acyl transferase (GOAT)), is essential for the binding of the hormone to its receptor in target tissues. Physiological roles of acyl ghrelin include the regulation of food intake, growth hormone secretion from the pituitary, and inhibition of insulin secretion from the pancreas. Here, we describe a medicinal chemistry campaign that led to the identification of small lipopeptidomimetics that inhibit GOAT in vitro. These molecules compete directly for substrate binding. We further describe the synthesis of heterocyclic inhibitors that compete at the acyl coenzyme A binding site.


2021 ◽  
Author(s):  
Anirban Das ◽  
Yogesh Gangarde ◽  
Ishu Saraogi

Insulin, a peptide hormone, is susceptible to amyloid formation upon exposure to aberrant physiological conditions, result-ing in a loss of its bioactivity. For mitigating insulin aggregation, we report a molecule called PAD-S, which completely inhibit-ed insulin fibril formation, and preserved insulin in its soluble form. Circular Dichroism spectroscopy showed that PAD-S was able to maintain the native structure of insulin, thus acting as a chemical chaperone. Seeded aggregation kinetics suggest that PAD-S inhibited primary nucleation events during aggregation. This is consistent with molecular docking results which suggest that PAD-S binds strongly to native insulin monomers/dimers. Through a competitive binding experiment with ‘LVEALYL’ peptide, we conclude that PAD-S likely binds to the amyloid prone B11-B17 residues of insulin thereby prevent-ing its aggregation. PAD-S was also effective in disaggregating preformed insulin fibrils to non-toxic species. PAD-S treated insulin was functional as indicated by its ability to phosphorylate Akt. PAD-S was also highly effective in preventing the ag-gregation of insulin biosimilars. The low cellular cytotoxicity of PAD-S, and amelioration of aggregation-induced toxicity by PAD-S treated insulin further highlights its potential as an effective chemical chaperone.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2113
Author(s):  
Shazia Mansoor ◽  
Pierre P. D. Kondiah ◽  
Yahya E. Choonara

Insulin is a peptide hormone that is key to regulating physiological glucose levels. Its molecular size and susceptibility to conformational change under physiological pH make it challenging to orally administer insulin in diabetes. The most effective route for insulin delivery remains daily injection. Unfortunately, this results in poor patient compliance and increasing the risk of micro- and macro-vascular complications and thus rising morbidity and mortality rates in diabetics. The use of 3D hydrogels has been used with much interest for various biomedical applications. Hydrogels can mimic the extracellular matrix (ECM) and retain large quantities of water with tunable properties, which renders them suitable for administering a wide range of sensitive therapeutics. Several studies have demonstrated the fixation of insulin within the structural mesh of hydrogels as a bio-scaffold for the controlled delivery of insulin. This review provides a concise incursion into recent developments for the safe and effective controlled delivery of insulin using advanced hydrogel platforms with a special focus on sustained release injectable formulations. Various hydrogel platforms in terms of their methods of synthesis, properties, and unique features such as stimuli responsiveness for the treatment of Type 1 diabetes mellitus are critically appraised. Key criteria for classifying hydrogels are also outlined together with future trends in the field.


2021 ◽  
Vol 9 ◽  
Author(s):  
Haotai Xie ◽  
Yixuan Huo ◽  
Qinzheng Chen ◽  
Xinlin Hou

Numerous congenital or secondary diseases, including, heart disease, respiratory disease, sepsis and many others, can lead to neonatal death. B-type natriuretic peptide (BNP) is a peptide hormone secreted by ventricular cells following an increase in ventricular wall tension. BNP functions to promote vasodilation, diuresis, and sodium release to regulate blood pressure. BNP is a sensitive index reflecting ventricular function, which may aid the diagnosis and monitoring of various neonatal diseases. In neonates, there is currently no consensus on a reference BNP level, as the plasma BNP concentration of healthy newborns varies with age, peaks in the first week after birth, and then gradually decreased to a stable level. In disease states, the correlation between the plasma BNP concentration and the results of echocardiography is good, which is of great significance in the screening, monitoring, and prognosis evaluation of neonatal cardiovascular diseases, including congenital heart disease, patent ductus arteriosus, etcetera. It also facilitates the judgment of the efficacy of treatment and perioperative management. Moreover, the monitoring of plasma BNP concentration provides guidance for the diagnosis, evaluation, and treatment selection of certain neonatal respiratory diseases and neonatal sepsis. This review summarizes the normal BNP values and discusses the application value of BNP in relation to physiological and pathological aspects in neonates.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1836
Author(s):  
Ines Barone ◽  
Cinzia Giordano

Leptin is a 16-kDa multifunctional, neuroendocrine peptide hormone secreted by adipocytes in proportion to total adipose tissue mass, known to control food intake, energy homeostasis, immune response, and reproductive processes [...]


Sign in / Sign up

Export Citation Format

Share Document