peptide hormones
Recently Published Documents


TOTAL DOCUMENTS

887
(FIVE YEARS 77)

H-INDEX

54
(FIVE YEARS 6)

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2243
Author(s):  
Irina Dodueva ◽  
Maria Lebedeva ◽  
Lyudmila Lutova

Various plant hormones can integrate developmental and environmental responses, acting in a complex network, which allows plants to adjust their developmental processes to changing environments. In particular, plant peptide hormones regulate various aspects of plant growth and development as well as the response to environmental stress and the interaction of plants with their pathogens and symbionts. Various plant-interacting organisms, e.g., bacterial and fungal pathogens, plant-parasitic nematodes, as well as symbiotic and plant-beneficial bacteria and fungi, are able to manipulate phytohormonal level and/or signaling in the host plant in order to overcome plant immunity and to create the habitat and food source inside the plant body. The most striking example of such phytohormonal mimicry is the ability of certain plant pathogens and symbionts to produce peptide phytohormones of different classes. To date, in the genomes of plant-interacting bacteria, fungi, and nematodes, the genes encoding effectors which mimic seven classes of peptide phytohormones have been found. For some of these effectors, the interaction with plant receptors for peptide hormones and the effect on plant development and defense have been demonstrated. In this review, we focus on the currently described classes of peptide phytohormones found among the representatives of other kingdoms, as well as mechanisms of their action and possible evolutional origin.


2021 ◽  
Vol 22 (20) ◽  
pp. 11059
Author(s):  
Martha A. Schalla ◽  
Andreas Stengel

Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus–pituitary–gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.


Author(s):  
I.Y. Tissen ◽  
◽  
L.A. Magarramova ◽  
A.A. Lebedev ◽  
P.D. Shabanov ◽  
...  

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Ross Bathgate ◽  
Thomas Dschietzig ◽  
Andrew L. Gundlach ◽  
Michelle Halls ◽  
Roger Summers

Relaxin family peptide receptors (RXFP, nomenclature as agreed by the NC-IUPHAR Subcommittee on Relaxin family peptide receptors [18, 81]) may be divided into two pairs, RXFP1/2 and RXFP3/4. Endogenous agonists at these receptors are heterodimeric peptide hormones structurally related to insulin: relaxin-1, relaxin, relaxin-3 (also known as INSL7), insulin-like peptide 3 (INSL3) and INSL5. Species homologues of relaxin have distinct pharmacology and relaxin interacts with RXFP1, RXFP2 and RXFP3, whereas mouse and rat relaxin selectively bind to and activate RXFP1 [184]. relaxin-3 is the ligand for RXFP3 but it also binds to RXFP1 and RXFP4 and has differential affinity for RXFP2 between species [183]. INSL5 is the ligand for RXFP4 but is a weak antagonist of RXFP3. relaxin and INSL3 have multiple complex binding interactions with RXFP1 [189] and RXFP2 [91] which direct the N-terminal LDLa modules of the receptors together with a linker domain to act as a tethered ligand to direct receptor signaling [186]. INSL5 and relaxin-3 interact with their receptors using distinct residues in their B-chains for binding, and activation, respectively [225, 104].


2021 ◽  
Author(s):  
Jennifer Reck ◽  
Nicole Beuret ◽  
Erhan Demirci ◽  
Cristina Prescianotto-Baschong ◽  
Martin Spiess

ABSTRACTUnlike constitutively secreted proteins, peptide hormones are stored in densely packed secretory granules, before regulated release upon stimulation. Secretory granules are formed at the trans-Golgi network (TGN) by self-aggregation of prohormones as functional amyloids. The nonapeptide hormone vasopressin, which forms a small disulfide loop, was shown to be responsible for granule formation of its precursor in the TGN as well as for toxic fibrillar aggregation of unfolded mutants in the endoplasmic reticulum (ER). Several other hormone precursors also contain similar small disulfide loops suggesting their function as a general device to mediate aggregation for granule biogenesis. To test this hypothesis, we studied the capacity of small disulfide loops of different hormone precursors to mediate aggregation in the ER and the TGN. They indeed induced ER aggregation although to different extents in Neuro-2a and COS-1 cells. Fused to a constitutively secreted reporter protein, they also promoted sorting into secretory granules, enhanced stimulated secretion, and increased Lubrol insolubility in AtT20 cells. These results support the hypothesis that small disulfide loops act as novel signals for secretory granule biogenesis and sorting by self-aggregation.


2021 ◽  
Author(s):  
Tian-en Zhang ◽  
Yan Shi ◽  
Xiu-ming Li ◽  
Qiang Zhao ◽  
Chun-xiang You

Abstract Nitrogen is not only an essential nutrient for plant, but also an important signal molecule to integrate and regulate gene expression, metabolism and growth. Plant peptides are considered as a new hormone, and play an important regulatory role in plant growth and development. However, there are few researches on the co-regulation network between nitrogen and peptide hormones in plant. Here we identified an apple MdCLE8 gene, which encodes a putative peptide, induced by nitrogen deficiency in apple. Ectopic expression of MdCLE8 inhibited lateral root formation in Arabidopsis under nitrogen deficiency. Similarly, overexpression of MdCLE8 inhibited lateral root development in apple adventitious roots, and this inhibition was amplified under nitrogen deficiency treatment. Further studies showed that MdCLE8 may inhibit the expression of several key genes during lateral root emergence stage in Arabidopsis, thereby inhibiting the emergence of lateral root from root cortex cells. Collectively, our study not only broadened the gene regulatory network under the influence of nitrogen in apple, but also expanded the function of CLE peptide hormones in apple.


Sign in / Sign up

Export Citation Format

Share Document