Rhesus glycoprotein and urea transporter genes in rainbow trout embryos are upregulated in response to alkaline water (pH 9.7) but not elevated water ammonia

2010 ◽  
Vol 96 (4) ◽  
pp. 308-313 ◽  
Author(s):  
Jessica Sashaw ◽  
Michele Nawata ◽  
Sarah Thompson ◽  
Chris M. Wood ◽  
Patricia A. Wright
2000 ◽  
Vol 78 (2) ◽  
pp. 307-319 ◽  
Author(s):  
Pierre Laurent ◽  
Michael P Wilkie ◽  
Claudine Chevalier ◽  
Chris M Wood

Exposure of rainbow trout (Oncorhynchus mykiss) to alkaline water (pH 9.5) impairs ammonia excretion (JAmm) and gill-mediated ion-exchange processes, as characterized by decreased Cl- (JC1in) and Na+ influx (JNain) across the gill. Scanning electron microscopy suggested that the depression of JC1in was concomitant with an early decrease in the population of the most active chloride cells (CCs), partly compensated for by an increasing number of immature CCs. However, within 72 h after the onset of exposure to alkaline water, there was a 2-fold increase in the fractional apical surface area of CCs that paralleled complete recovery of the maximal Cl- influx rate (JC1max). These results suggest that recovery of JC1max was associated with greater CC surface area, resulting in more transport sites on the gill epithelium. Morphometric analysis of the outermost layer of pavement cells on the lamellar epithelium showed a greater density of microvilli during exposure to alkaline water, which may have contributed to partial restoration of the number of Na+ transport sites (JNamax). Finally, the blood-to-water gill-diffusion distance decreased by 27% after 72 h at pH 9.5, and likely contributed to progressive restoration of ammonia excretion in alkaline water.


2000 ◽  
Vol 203 (20) ◽  
pp. 3199-3207 ◽  
Author(s):  
C.M. Pilley ◽  
P.A. Wright

We tested the hypothesis that urea transport in rainbow trout (Oncorhynchus mykiss) embryos is dependent, in part, on a bidirectional urea-transport protein. Acute exposure to phloretin and urea analogs [acetamide, thiourea, 1,(4-nitrophenyl)-2-thiourea] reversibly inhibited urea excretion from the embryos to the external water. Unidirectional urea influx was inhibited by acetamide and thiourea, with IC(50) values of 0.04 and 0.05 mmol l(−1), respectively. Influx of urea from the external water to the embryo tended to saturate at elevated external urea concentrations (V(max)=10.50 nmol g(−1) h(−1); K(m)=2 mmol l(−1)). At very high urea concentrations (20 mmol l(−1)), however, a second, non-saturable component was apparent. These results indicate that urea excretion in trout embryos is dependent, in part, on a phloretin-sensitive facilitated urea transporter similar to that reported in mammalian inner medullary collecting ducts and elasmobranch kidney.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e16544-e16544
Author(s):  
Juliana Ramos Chaves ◽  
Carolina Rosal Teixeira de Souza ◽  
Antonio André Conde Modesto ◽  
Fabiano Cordeiro Moreira ◽  
Eliel Barbosa Teixeira ◽  
...  

e16544 Background: It is known that abnormal expression of miRNAs in the gastric cancer (GC) contributes to its carcinogenesis. Therefore, ingestion of commercial (usual) water on a daily basis may be a contributing factor for the occurrence of alterations in the gastric mucosal. In this study, it was evaluated the expression of the miRNAs miR-29c, miR-7, miR-155, and miR-135b in the gastric tissue of patients with gastritis before and after the consumption of alkaline water (pH range from 8.0 to 10.0), as well as the clinic pathological characteristics. Methods: 50 subjects from the Amazon region, diagnosed with gastritis that routinely used commercial (usual) water with a pH lower than 5.0, were enrolled to change the consume water to a pH of 8.5 to 10.0 for 5 months. Results: Endoscopic findings of gastritis were such different (less severe disease), p = 0.024; in 43% diagnosed with moderate gastritis upfront esophagogastroduodenoscopy (EGD) presented mild gastritis after the consumption of alkaline water, according to study methods; there were no worsening gastritis and there were a significant increase in the expression of miR-135b (p = 0.039) and miR-29c (p = 0.039). Conclusions: Modified pH range water (from 8.0 to 10.0) ingested for 5 months was able lead to a less severe gastritis according to the Sidney classification system, suggesting that this lifestyle change represented a clinical benefit in patients with gastritis on the Amazon region. In addition, higher expression of miR-135b and miR-29c was observed after the consumption of alkaline water for 5 months. [Table: see text]


1986 ◽  
Vol 126 (1) ◽  
pp. 499-512 ◽  
Author(s):  
PATRICIA WRIGHT ◽  
TOM HEMING ◽  
DAVID RANDALL

We investigated the pH of interlamellar water of trout (Salmo gairdneri) by following changes in the downstream pH of expired water using a stopped-flow method. As water flowed over the gills of control fish, there was a significant decrease in water pH. Acetazolamide added to the water increased the CO2 disequilibrium, while carbonic anhydrase (CA) eliminated the CO2 disequilibrium relative to control water. Mucus excreted by the fish was found to contain CA activity by the pH-stat technique. We conclude water acidification is due to the conversion of excreted CO2 to HCO3− and H+ at the gill surface.


Sign in / Sign up

Export Citation Format

Share Document