The effects of model polysiloxane and fouling-release coatings on embryonic development of a sea urchin (Arbacia punctulata) and a fish (Oryzias latipes)

2012 ◽  
Vol 110-111 ◽  
pp. 162-169 ◽  
Author(s):  
Danqing Feng ◽  
Daniel Rittschof ◽  
Beatriz Orihuela ◽  
Kevin Wing Hin Kwok ◽  
Shane Stafslien ◽  
...  
1981 ◽  
Vol 256 (20) ◽  
pp. 10538-10542
Author(s):  
D.P. Rossignol ◽  
W.J. Lennarz ◽  
C.J. Waechter

1971 ◽  
Vol 9 (3) ◽  
pp. 603-619
Author(s):  
W. D. COHEN ◽  
T. GOTTLIEB

Microtubules with incomplete cylindrical structure are present in isolated mitotic spindles of the sea urchin, Arbacia punctulata. In cross-section they appear C-shaped, and are thus similar to the ‘C-microtubules’ or ‘C-filaments’ observed previously in other systems. The C-microtubules are not uniformly distributed within isolated spindles, but are typically numerous in the interzonal region of anaphase spindles and in the metaphase chromosome ‘plate’. In chromosome-to-pole regions they are seen much less frequently, and microtubules with the usual O-configuration predominate. Counts of C- and O-microtubules in anaphase spindle cross-sections of known location show an inverse relationship between the number of C-microtubules present and the total number of microtubules present. The observations suggest that the C-microtubules are not simple artifacts of fixation or isolation, but rather may represent a stage of microtubule disassembly which occurs in the interzone during isolation or during anaphase in vivo. The alternate possibility of assembly is not excluded, however. The significance of C-microtubules is further discussed with respect to their occurrence in other systems, and to potential differences between mitotic microtubules.


1946 ◽  
Vol 29 (5) ◽  
pp. 267-275 ◽  
Author(s):  
Herbert Shapiro

A study was made of the diffusion of the red pigment echinochrome from the eggs of the sea urchin, Arbacia punctulata, into sea water. Unfertilized eggs retained their pigment, over periods of hours. Outward diffusion of pigment from unfertilized eggs normally is entirely negligible, or does not occur at all. Enchancing the calcium or potassium content of the artificial sea water (while retaining isosmotic conditions) did not induce pigment release. Under anaerobic conditions, unfertilized eggs release pigment in small quantities. Fertilization alone brings about echinochrome release. Fertilized eggs invariably released pigment, whether in normal sea water, or sea water with increased calcium or potassium. This diffusion of the pigment began during the first cleavage, possibly soon after fertilization. The pigment release is not a consequence solely of the cell's permeability to echinochrome (or chromoprotein, or other pigment combination) but is preceded by events leading to a release of echinochrome from the granules in which it is concentrated within the cell. These events may be initiated by activation or by anaerobiosis. The phenomenon was not due to cytolysis.


Toxicon ◽  
2016 ◽  
Vol 109 ◽  
pp. 63-69 ◽  
Author(s):  
Elena Gudimova ◽  
Hans C. Eilertsen ◽  
Trond Ø. Jørgensen ◽  
Espen Hansen

1984 ◽  
Vol 231 (3) ◽  
pp. 413-422 ◽  
Author(s):  
Christopher P. Carron ◽  
Frank J. Longo

1990 ◽  
Vol 68 (9) ◽  
pp. 1083-1089 ◽  
Author(s):  
John J. Robinson

The protein composition and organization of the sea urchin extraembryonic hyaline layer was examined. Hyalin and a polypeptide of 45 kilodaltons (kDa) were present in hyaline layers isolated from 1-h-old embryos through to the pluteus larva stage. In contrast, several polypeptide species ranging in size from 175 to 32 kDa either decreased in amount or disappeared from the layer as embryonic development proceeded. Concomitant with the changes in composition, hyaline layers became progressively more refractory to dissolution by washing in Ca2+, Mg2+-free seawater. Incubation of intact layers, isolated from 1-h-old embryos, with proteinase K resulted in the selective digestion of hyalin and was accompanied by release of the 45-kDa polypeptide from the layers. Washing intact layers in 20 mM Tris (pH 8.0) also resulted in the selective removal of hyalin and the 45-kDa polypeptide. The Ca2+-precipitable protein hyalin, alone among the hyaline layer polypeptides, bound the Ca2+-antagonist ruthenium red. These results suggest a structural organization within the hyaline layer that is both heterogenous and dynamic throughout embryonic development.Key words: hyaline layer, composition, organization, development.


Sign in / Sign up

Export Citation Format

Share Document