scholarly journals THE EXTRACELLULAR RELEASE OF ECHINOCHROME

1946 ◽  
Vol 29 (5) ◽  
pp. 267-275 ◽  
Author(s):  
Herbert Shapiro

A study was made of the diffusion of the red pigment echinochrome from the eggs of the sea urchin, Arbacia punctulata, into sea water. Unfertilized eggs retained their pigment, over periods of hours. Outward diffusion of pigment from unfertilized eggs normally is entirely negligible, or does not occur at all. Enchancing the calcium or potassium content of the artificial sea water (while retaining isosmotic conditions) did not induce pigment release. Under anaerobic conditions, unfertilized eggs release pigment in small quantities. Fertilization alone brings about echinochrome release. Fertilized eggs invariably released pigment, whether in normal sea water, or sea water with increased calcium or potassium. This diffusion of the pigment began during the first cleavage, possibly soon after fertilization. The pigment release is not a consequence solely of the cell's permeability to echinochrome (or chromoprotein, or other pigment combination) but is preceded by events leading to a release of echinochrome from the granules in which it is concentrated within the cell. These events may be initiated by activation or by anaerobiosis. The phenomenon was not due to cytolysis.

1951 ◽  
Vol 34 (3) ◽  
pp. 285-293 ◽  
Author(s):  
Anna Monroy Oddo ◽  
Maria Esposito

In the eggs of Arbacia lixula and Paracentrotus lividus an uptake of K occurs during the first 10 minutes following fertilization. Between 10 and 40 minutes K is then released. Both in Arbacia and in Paracentrotus the minimum point of the curve coincides with the nuclear streak stage. A maximum loss of 25 per cent in Arbacia and 20 per cent in Paracentrotus with respect to the amount present in the unfertilized eggs has been found. From 40 minutes up to 1 hour K undergoes a further increase and when the first cleavage sets in the same amount of K is present as in the unfertilized eggs. By treating the eggs with K-free artificial sea water it has been established that about 60 per cent of the K content of the eggs is in a non-diffusible condition. Also under such conditions the eggs when fertilized are able to take up even the very small amount of K present in the medium that was released by them prior to fertilization.


The echinopluteus of the genus Arbacia has been known since 1853. Echinoplutei of the species at present under investigation were first reared in 1880 by Fewkes, and two years later Garman and Colton (1882) succeeded in rearing them through the metamorphosis. The Mediterranean species Arbacia lixula , L. (syn. A . pustulosa , Gray) has also been reared through metamorphosis, and Übisch (1913) was the first to attempt an analysis of the test of the imago. The composition of the corona in the imago of A . pustulosa , as described in the paper just referred to (Übisch, 1913), is very different from that in the imago of e. g . Echinus or Strongylocentrotus . The opportunity of working at the Marine Biological Laboratory, Woods Hole, presenting itself, it was thought that a study of the development of the test in Arbacia punctulata , Gray, might reveal some points of interest. Accordingly, cultures of this common sea-urchin were started on July 28, 1926, and the echinoplutei were fed on the diatom Nitzschia closterium W. Sm. forma minutissima . Forty days later (September 6th) the first imago was obtained and the echinoplutei continued to metamorphose throughout the rest of September. Early in August a shallow glass vessel containing filtered sea-water was infected with plankton obtained by towing, and, by the first week of September, the bottom and sides of the vessel were well coated with diatoms. Many of the imagines, which measure 0·5 mm. in diameter including the spines, were transferred to this vessel and a number increased considerably in size. The largest specimen obtained in this way was 1·63 mm. in diameter inclusive of the spines; the diameter of the test alone was 0·9 mm.


1928 ◽  
Vol 12 (1) ◽  
pp. 129-138 ◽  
Author(s):  
Morton McCutcheon ◽  
Balduin Lucke

1. Permeability to water in unfertilized eggs of the sea urchin, Arbacia punctulata, is found to be greater in hypotonic solutions of dextrose, saccharose and glycocoll than in sea water of the same osmotic pressure. 2. The addition to dextrose solution of small amounts of CaCl2 or MgCl2 restores the permeability approximately to the value obtained in sea water. 3. This effect of CaCl2 and MgCl2 is antagonized by the further addition of NaCl or KCl. 4. It is concluded that the NaCl and KCl tend to increase the permeability of the cell to water, CaCl2 and MgCl2 to decrease it. 5. The method here employed can be used for quantitative study of salt antagonism.


1948 ◽  
Vol 32 (1) ◽  
pp. 43-51 ◽  
Author(s):  
Herbert Shapiro

1. Resting and activated eggs of the sea urchin Arbacia punctulata were swollen in hypotonic sea water (60, 70, 80, and 90 per cent), and allowed to attain equilibrium volumes (Figs. 1 and 2). 2. Both fertilized and unfertilized eggs obey the Boyle-van't-Hoff law, but the value for b, the "osmotically inactive fraction" or non-swellable volume, was different for the two, averaging in the cases studied 7.3 per cent for unfertilized and 27.4 per cent for fertilized. 3. On activation, the eggs of the sea urchin undergo a definite increase in total cell volume, of approximately 2.7 per cent. 4. Some evidence is adduced for the possibility that the alteration in cell volume and in o.i.f. may depend upon the species in question. 5. A parallelism between change in b and alteration of respiratory metabolism in Arbacia, Chaetopterus, and Arbacia fragments is pointed out. This requires further investigation in other species to establish generality. 6. Equations for the calculation of the point at which osmotic pressures and cell volumes are identical for unfertilized and fertilized eggs are included. 7. A mechanical analogue of the phenomena is introduced (Fig. 3).


1965 ◽  
Vol 25 (2) ◽  
pp. 81-100 ◽  
Author(s):  
Luther E. Franklin

Sea urchin gametes predominate in molecular studies of fertilization, yet relatively little is known of the subcellular aspects of sperm entry in this group. Accordingly, it seemed desirable to make a detailed examination of sperm entry phenomena in sea urchins with the electron microscope. Gametes of the sea urchins Arbacia punctulata and Lytechinus variegatus were used in this study. Samples of eggs containing 2 to 8 per cent oocytes were selected and fixed with osmium tetroxide in sea water at various intervals after insemination. Fixed specimens were embedded in Epon 812, sectioned, and examined with an electron microscope. An apical vesicle was observed at the anterior end of the acrosome. The presence of this structure, together with other observations, suggested that initiation of the acrosome reaction in sea urchin sperm involves dehiscence of the acrosomal region with the subsequent release of the acrosomal granule. Contact and initial fusion of gamete membranes was observed in mature eggs and oocytes and invariably involved the extended acrosomal tubule of the spermatozoon. Only one spermatozoon normally enters the mature egg. The probability of locating such a sperm in ultrathin sections is exceedingly low. Several sperm do normally enter oocytes. Consequently, observations of sperm entry were primarily restricted to the latter. The manner of sperm entry into oocytes did not resemble phagocytosis. Organelles of the spermatozoon were progressively divested of their plasma membrane as they entered the ground cytoplasm of the oocyte fertilization cone. Initiation of the acrosome reaction, contact and initial fusion of gamete membranes, and sperm entry into oocytes of sea urchins conform to the Hydroides-Saccoglossus pattern of early fertilization events as described by Colwin and Colwin (13).


1983 ◽  
Vol 61 (1) ◽  
pp. 175-189
Author(s):  
R. Kuriyama ◽  
G.G. Borisy

Conditions that induce the formation of asters in unfertilized sea-urchin eggs have been investigated. Monasters were formed by treatment of eggs with acidic or basic sea-water, or procaine- or thymol-containing sea-water. A second treatment step, incubation with D2O-containing, ethanol-containing or hypertonic sea-water induced multiple cytasters. The number and size of cytasters varied according to the concentration of agents and duration of the first and second treatments, and also upon the species of eggs and the season in which the eggs were obtained. Generally, a longer second treatment or a higher concentration of the second medium resulted in a higher number of cytasters per egg. Asters were isolated and then examined by light and electron microscopy. Isolated monasters apparently lacked centrioles, whereas cytasters obtained from eggs undergoing the two-step treatment contained one or more centrioles. Up to eight centrioles were seen in a single aster; the centrioles appeared to have been produced during the second incubation. Centrospheres prepared from isolated asters retained the capacity to nucleate the formation of microtubules in vitro as assayed by light and electron microscopy. Many microtubules radiated from the centre of isolated asters, whether they contained centrioles or not. This observation is consistent with many other reports that microtubule-organizing centres need not contain centrioles.


1997 ◽  
Vol 200 (22) ◽  
pp. 2881-2892 ◽  
Author(s):  
P Leong ◽  
D Manahan

Early stages of animal development have high mass-specific rates of metabolism. The biochemical processes that establish metabolic rate and how these processes change during development are not understood. In this study, changes in Na+/K+-ATPase activity (the sodium pump) and rate of oxygen consumption were measured during embryonic and early larval development for two species of sea urchin, Strongylocentrotus purpuratus and Lytechinus pictus. Total (in vitro) Na+/K+-ATPase activity increased during development and could potentially account for up to 77 % of larval oxygen consumption in Strongylocentrotus purpuratus (pluteus stage) and 80 % in Lytechinus pictus (prism stage). The critical issue was addressed of what percentage of total enzyme activity is physiologically active in living embryos and larvae and thus what percentage of metabolism is established by the activity of the sodium pump during development. Early developmental stages of sea urchins are ideal for understanding the in vivo metabolic importance of Na+/K+-ATPase because of their small size and high permeability to radioactive tracers (86Rb+) added to sea water. A comparison of total and in vivo Na+/K+-ATPase activities revealed that approximately half of the total activity was utilized in vivo. The remainder represented a functionally active reserve that was subject to regulation, as verified by stimulation of in vivo Na+/K+-ATPase activity in the presence of the ionophore monensin. In the presence of monensin, in vivo Na+/K+-ATPase activities in embryos of S. purpuratus increased to 94 % of the maximum enzyme activity measured in vitro. Stimulation of in vivo Na+/K+-ATPase activity was also observed in the presence of dissolved alanine, presumably due to the requirement to remove the additional intracellular Na+ that was cotransported with alanine from sea water. The metabolic cost of maintaining the ionic balance was found to be high, with this process alone accounting for 40 % of the metabolic rate of sea urchin larvae (based on the measured fraction of total Na+/K+-ATPase that is physiologically active in larvae of S. purpuratus). Ontogenetic changes in pump activity and environmentally induced regulation of reserve Na+/K+-ATPase activity are important factors that determine a major proportion of the metabolic costs of sea urchin development.


Development ◽  
1987 ◽  
Vol 101 (2) ◽  
pp. 255-265 ◽  
Author(s):  
J.A. Anstrom ◽  
J.E. Chin ◽  
D.S. Leaf ◽  
A.L. Parks ◽  
R.A. Raff

In this report, we use a monoclonal antibody (B2C2) and antibodies against a fusion protein (Leaf et al. 1987) to characterize msp130, a cell surface protein specific to the primary mesenchyme cells of the sea urchin embryo. This protein first appears on the surface of these cells upon ingression into the blastocoel. Immunoelectronmicroscopy shows that msp130 is present in the trans side of the Golgi apparatus and on the extracellular surface of primary mesenchyme cells. Four precursor proteins to msp130 are identified and we show that B2C2 recognizes only the mature form of msp130. We demonstrate that msp130 contains N-linked carbohydrate groups and that the B2C2 epitope is sensitive to endoglycosidase F digestion. Evidence that msp130 is apparently a sulphated glycoprotein is presented. The recognition of the B2C2 epitope of msp130 is disrupted when embryos are cultured in sulphate-free sea water. In addition, two-dimensional immunoblots show that msp130 is an acidic protein that becomes substantially less acidic in the absence of sulphate. We also show that two other independently derived monoclonal antibodies, IG8 (McClay et al. 1983; McClay, Matranga & Wessel, 1985) and 1223 (Carson et al. 1985), recognize msp130, and suggest this protein to be a major cell surface antigen of primary mesenchyme cells.


1971 ◽  
Vol 9 (3) ◽  
pp. 603-619
Author(s):  
W. D. COHEN ◽  
T. GOTTLIEB

Microtubules with incomplete cylindrical structure are present in isolated mitotic spindles of the sea urchin, Arbacia punctulata. In cross-section they appear C-shaped, and are thus similar to the ‘C-microtubules’ or ‘C-filaments’ observed previously in other systems. The C-microtubules are not uniformly distributed within isolated spindles, but are typically numerous in the interzonal region of anaphase spindles and in the metaphase chromosome ‘plate’. In chromosome-to-pole regions they are seen much less frequently, and microtubules with the usual O-configuration predominate. Counts of C- and O-microtubules in anaphase spindle cross-sections of known location show an inverse relationship between the number of C-microtubules present and the total number of microtubules present. The observations suggest that the C-microtubules are not simple artifacts of fixation or isolation, but rather may represent a stage of microtubule disassembly which occurs in the interzone during isolation or during anaphase in vivo. The alternate possibility of assembly is not excluded, however. The significance of C-microtubules is further discussed with respect to their occurrence in other systems, and to potential differences between mitotic microtubules.


Sign in / Sign up

Export Citation Format

Share Document