fouling release
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 42)

H-INDEX

42
(FIVE YEARS 6)

2021 ◽  
Vol 161 ◽  
pp. 106539
Author(s):  
Hong-wei Zhou ◽  
Yi-ming Zheng ◽  
Miao Ba ◽  
Jun-jun Kong ◽  
Yu-feng Wang
Keyword(s):  

2021 ◽  
Author(s):  
Xinyue Zhang ◽  
Ralph Crisci ◽  
John. A Finlay ◽  
Hongyi Cai ◽  
Anthony S. Clare ◽  
...  

Polydimethylsiloxane (PDMS) has been widely used in various fields due to its appealing physical and chemical properties. However, its high hydrophobicity not only yields poor adhesion to substrates but also facilitates undesired adsorption of substances such as proteins, biofoulers, etc., which limits the performance and lifetime of PDMS. Moreover, traditional surface modification techniques are often not efficient on PDMS surfaces because of the surface reconstruction. Although new methods involving chemical modification have been developed, most of them require complicated procedures and equipment. To overcome this challenge, we incorporate metal-ligand coordination, a non-covalent interaction bearing polar functionality, into PDMS, which exposes the hydrophilicity progressively upon dynamic bond breakage and reformation. We demonstrate that the hydrophilicity of coordinated PDMS can be tailored by the choice of network structure, counter anions, and metal cations, which yield distinct network dynamics. The wetting mechanism is discussed in the context of chain reconfiguration and surface reconstruction. We also show that a properly designed metal-ligand coordinated PDMS has potential as a superior marine fouling release coating by weakening diatom attachment. Through this paper, we introduce a new concept for tuning material hydrophilicity via dynamic polar functionalities, which is applicable to a wide range of polymers.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3156
Author(s):  
Hongwei Zhou ◽  
Yiming Zheng ◽  
Mengyu Li ◽  
Miao Ba ◽  
Yufeng Wang

Copolymers containing MQ silicone and acrylate were synthesized by controlling the additive amount of compositions. Subsequently, fouling release coatings based on the copolymer with the incorporation of non-reactive phenylmethylsilicone oil were prepared. The surface properties of the coating (CAMQ40) were consistent with that of the polydimethylsiloxane (PDMS) elastomer, which ensured good hydrophobicity. Moreover, the seawater volume swelling rate of all prepared coatings was less than 5%, especially for CAMQ40 with only 1.37%. Copolymers enhanced the mechanical properties of the coatings, while the enhancement was proportional to the molar content of structural units from acrylate in the copolymer. More importantly, the adhesion performance between the prepared coatings and substrates indicated that pull-off strength values were more than 1.6 MPa, meaning a high adhesion strength. The phenylmethylsilicone oil leaching observation determined that the oil leaching efficiency increased with the increase in the structural unit’s molar content from MQ silicone in the copolymer, which was mainly owing to the decrease in compatibility between oil and the cured coating, as well as the decrease in mechanical properties. High oil leaching efficiency could make up for the decrease in the biofouling removal rate due to the enhancement of the elastic modulus. For CAMQ40, it had an excellent antifouling performance at 30 days of exposure time with more than 92% of biofouling removal rate, which was confirmed by biofilm adhesion assay.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3067
Author(s):  
Qiang Yang ◽  
Zhanping Zhang ◽  
Yuhong Qi ◽  
Hongyang Zhang

Fouling-release coatings reinforced with micro-alumina and nano-alumina were prepared based on polydimethylsiloxane (PDMS) containing phenylmethylsilicone oil. The surface properties, mechanical properties, leaching behavior of silicone oil, anti-fouling and drag-reduction performance of the coating were studied. The results show that the addition of alumina can significantly improve the tensile strength, elastic modulus and Shore’s hardness of the coating. The adhesion experiments of marine bacteria and Navicula Tenera show that the addition of alumina can reduce the antifouling performance of the coating, which is related to the stripping mode of fouling organisms. The fouling organisms leave the coating surface by shearing, and the energy required for shearing is proportional to the elastic modulus of the coating. At 800–1400 rpm, the addition of alumina will reduce the drag reduction performance of the coating, which is related to the drag reduction mechanism of PDMS. PDMS counteracts part of the resistance by surface deformation. The larger the elastic modulus is, the more difficult the surface deformation is. The experiment of silicone oil leaching shows that the increase of alumina addition amount and the decrease of particle size will inhibit the leaching of silicone oil.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2602
Author(s):  
Yanqiang Mo ◽  
Peihong Xue ◽  
Qiang Yang ◽  
Hao Liu ◽  
Xu Zhao ◽  
...  

Inspired by the antifouling properties of scaly fish, the conventional silicone coating with phenylmethylsilicone oil (PSO/PDMS) composite coating was fabricated and modified with single layer polystyrene (PS) microsphere (PSO/PDMS-PS) arrays. The fish scale like micro-nano structures were fabricated on the surface of bio-inspired coating, which can reduce the contact area with the secreted protein membrane of fouling organisms effectively and prevent further adhesion between fouling organisms and bio-inspired coating. Meanwhile, PSO exuded to the coating surface has the similar function with mucus secreted by fish epidermis, which make the coating surface slithery and will be polished with the fouling organisms in turbulent waters. Compared to PSO/PDMS coating without any structure and conventional silicone coating, PSO/PDMS-PS showed better antiadhesion activity against both marine bacteria and benthic diatom (Navicula sp.). Additionally, the existence of PS microspheres can reduce the release rate of PSO greatly, which will extend the service life of coating. Compared to PSO/PDMS coating, the sustained release efficiency of PSO/PDMS-PS coating can reach 23.2%. This facile method for fabricating the bio-inspired composite slow-release antifouling coating shows a widely fabricating path for the development of synergistic anti-fouling coating.


Author(s):  
Amanda Leonardi ◽  
Aria C. Zhang ◽  
Nilay Düzen ◽  
Nick Aldred ◽  
John A. Finlay ◽  
...  

2021 ◽  
Vol 168 ◽  
pp. 105293
Author(s):  
Veronica Piazza ◽  
Giuliano Greco ◽  
Chiara Gambardella ◽  
Francesca Garaventa ◽  
Paolo Massanisso ◽  
...  

2021 ◽  
Author(s):  
Maria Papadatou ◽  
Samuel Robson ◽  
Sergey Dobretsov ◽  
Joy E. M. Watts ◽  
Jennifer Longyear ◽  
...  

Marine biofouling imposes serious environmental and economic impacts on marine applications, especially in the shipping industry. To combat biofouling, protective coatings are applied on vessel hulls which are divided into two major groups: biocidal and non-toxic fouling-release. The aim of the current study was to explore the effect of coating type on microbial biofilm community profiles to better understand the differences between the communities developed on fouling control biocidal antifouling and biocidal-free coatings. Biocidal (Intersmooth(R) 7460HS SPC), fouling-release (Intersleek(R) 900), and inert surfaces were deployed in the marine environment for 4 months and the biofilms that developed on these surfaces were investigated using Illumina NGS sequencing, targeting the prokaryotic 16S rRNA gene. The results confirmed differences in the community profiles between coating types. The biocidal coating supported communities dominated by Alphaproteobacteria (Loktanella, Sphingorhabdus, Erythrobacter) and Bacteroidetes (Gilvibacter), whilst other taxa such as Portibacter and Sva0996 marine group, proliferated on the fouling-release surface. Knowledge of these marine biofilm components on fouling control coatings will serve as a guide for future investigations of marine microfouling as well as informing the coatings industry of potential microbial targets for robust coating formulations.


Langmuir ◽  
2021 ◽  
Author(s):  
Florian Koschitzki ◽  
Robin Wanka ◽  
Lennart Sobota ◽  
Harrison Gardner ◽  
Kelli Z. Hunsucker ◽  
...  

Biofouling ◽  
2021 ◽  
pp. 1-18
Author(s):  
Jackson Benda ◽  
Shane Stafslien ◽  
Lyndsi Vanderwal ◽  
John A. Finlay ◽  
Anthony S. Clare ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document