Detection of malicious and non-malicious website visitors using unsupervised neural network learning

2013 ◽  
Vol 13 (1) ◽  
pp. 698-708 ◽  
Author(s):  
Dusan Stevanovic ◽  
Natalija Vlajic ◽  
Aijun An
Children ◽  
2020 ◽  
Vol 7 (10) ◽  
pp. 182
Author(s):  
Harshini Sewani ◽  
Rasha Kashef

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by a lack of social communication and social interaction. Autism is a mental disorder investigated by social and computational intelligence scientists utilizing advanced technologies such as machine learning models to enhance clinicians’ ability to provide robust diagnosis and prognosis of autism. However, with dynamic changes in autism behaviour patterns, these models’ quality and accuracy have become a great challenge for clinical practitioners. We applied a deep neural network learning on a large brain image dataset obtained from ABIDE (autism brain imaging data exchange) to provide an efficient diagnosis of ASD, especially for children. Our deep learning model combines unsupervised neural network learning, an autoencoder, and supervised deep learning using convolutional neural networks. Our proposed algorithm outperforms individual-based classifiers measured by various validations and assessment measures. Experimental results indicate that the autoencoder combined with the convolution neural networks provides the best performance by achieving 84.05% accuracy and Area under the Curve (AUC) value of 0.78.


2011 ◽  
Vol 131 (11) ◽  
pp. 1889-1894
Author(s):  
Yuta Tsuchida ◽  
Michifumi Yoshioka

Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 711
Author(s):  
Mina Basirat ◽  
Bernhard C. Geiger ◽  
Peter M. Roth

Information plane analysis, describing the mutual information between the input and a hidden layer and between a hidden layer and the target over time, has recently been proposed to analyze the training of neural networks. Since the activations of a hidden layer are typically continuous-valued, this mutual information cannot be computed analytically and must thus be estimated, resulting in apparently inconsistent or even contradicting results in the literature. The goal of this paper is to demonstrate how information plane analysis can still be a valuable tool for analyzing neural network training. To this end, we complement the prevailing binning estimator for mutual information with a geometric interpretation. With this geometric interpretation in mind, we evaluate the impact of regularization and interpret phenomena such as underfitting and overfitting. In addition, we investigate neural network learning in the presence of noisy data and noisy labels.


Sign in / Sign up

Export Citation Format

Share Document