A robust approach for multi-agent natural resource allocation based on stochastic optimization algorithms

2014 ◽  
Vol 18 ◽  
pp. 12-24 ◽  
Author(s):  
N. Barbalios ◽  
P. Tzionas
2018 ◽  
Vol 21 (62) ◽  
pp. 53
Author(s):  
Anastasios Alexiadis ◽  
Ioannis Refanidis ◽  
Ilias Sakellariou

Automated meeting scheduling is the task of reaching an agreement on a time slot to schedule a new meeting, taking into account the participants’ preferences over various aspects of the problem. Such a negotiation is commonly performed in a non-automated manner, that is, the users decide whether they can reschedule existing individual activities and, in some cases, already scheduled meetings in order to accommodate the new meeting request in a particular time slot, by inspecting their schedules. In this work, we take advantage of SelfPlanner, an automated system that employs greedy stochastic optimization algorithms to schedule individual activities under a rich model of preferences and constraints, and we extend that work to accommodate meetings. For each new meeting request, participants decide whether they can accommodate the meeting in a particular time slot by employing SelfPlanner’s underlying algorithms to automatically reschedule existing individual activities. Time slots are prioritized in terms of the number of users that need to reschedule existing activities. An agreement is reached as soon as all agents can schedule the meeting at a particular time slot, without anyone of them experiencing an overall utility loss, that is, taking into account also the utility gain from the meeting. This dynamic multi-agent meeting scheduling approach has been tested on a variety of test problems with very promising results.


2021 ◽  
Vol 1 ◽  
pp. 113-117
Author(s):  
Dmitry Syedin ◽  

The work is devoted to the hybridization of stochastic global optimization algorithms depending on their architecture. The main methods of hybridization of stochastic optimization algorithms are listed. An example of hybridization of the algorithm is given, the modification of which became possible due to taking into account the characteristic architecture of the M-PCA algorithm.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Xia Wu ◽  
Changjun Li ◽  
Yufa He ◽  
Wenlong Jia

Operation optimization of natural gas pipelines has received increasing attentions, due to such advantages as maximizing the operating economic benefit and the gas delivery amount. This paper provides a review on the most relevant research progress related to the steady-state operation optimization models of natural gas pipelines as well as corresponding solution methods based on stochastic optimization algorithms. The existing operation optimization model of the natural gas pipeline is a mixed-integer nonlinear programming (MINLP) model involving a nonconvex feasible region and mixing of continuous, discrete, and integer optimization variables, which represents an extremely difficult problem to be solved by use of optimization algorithms. A survey on the state of the art demonstrates that many stochastic algorithms show better performance of solving such optimization models due to their advantages of handling discrete variables and of high computation efficiency over classical deterministic optimization algorithms. The essential progress mainly with regard to the applications of the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Simulated Annealing (SA) algorithms, and their extensions is summarized. The performances of these algorithms are compared in terms of the quality of optimization results and the computation efficiency. Furthermore, the research challenges of improving the optimization model, enhancing the stochastic algorithms, developing an online optimization technology, researching the transient optimization, and studying operation optimization of the integrated energy network are discussed.


Sign in / Sign up

Export Citation Format

Share Document