Efficient optimization technique for multiple DG allocation in distribution networks

2020 ◽  
Vol 86 ◽  
pp. 105938 ◽  
Author(s):  
Ali Selim ◽  
Salah Kamel ◽  
Francisco Jurado
2021 ◽  
Author(s):  
Chinmay Shah ◽  
Richard Wies

The conventional power distribution network is being transformed drastically due to high penetration of renewable energy sources (RES) and energy storage. The optimal scheduling and dispatch is important to better harness the energy from intermittent RES. Traditional centralized optimization techniques limit the size of the problem and hence distributed techniques are adopted. The distributed optimization technique partitions the power distribution network into sub-networks which solves the local sub problem and exchanges information with the neighboring sub-networks for the global update. This paper presents an adaptive spectral graph partitioning algorithm based on vertex migration while maintaining computational load balanced for synchronization, active power balance and sub-network resiliency. The parameters that define the resiliency metrics of power distribution networks are discussed and leveraged for better operation of sub-networks in grid connected mode as well as islanded mode. The adaptive partition of the IEEE 123-bus network into resilient sub-networks is demonstrated in this paper.


2016 ◽  
Vol 20 (4) ◽  
pp. 1091-1103 ◽  
Author(s):  
Marina Barbaric ◽  
Drazen Loncar

The increasing energy production from variable renewable energy sources such as wind and solar has resulted in several challenges related to the system reliability and efficiency. In order to ensure the supply-demand balance under the conditions of higher variability the micro-grid concept of active distribution networks arising as a promising one. However, to achieve all the potential benefits that micro-gird concept offer, it is important to determine optimal operating strategies for micro-grids. The present paper compares three energy management strategies, aimed at ensuring economical micro-grid operation, to find a compromise between the complexity of strategy and its efficiency. The first strategy combines optimization technique and an additional rule while the second strategy is based on the pure optimization approach. The third strategy uses model based predictive control scheme to take into account uncertainties in renewable generation and energy consumption. In order to compare the strategies with respect to cost effectiveness, a residential micro-grid comprising photovoltaic modules, thermal energy storage system, thermal loads, electrical loads as well as combined heat and power plant, is considered.


2019 ◽  
Author(s):  
Shuai Fan ◽  
guangyu he ◽  
Xinyang Zhou ◽  
Mingjian Cui

This paper proposes a Lyapunov optimization-based <a><b> </b></a>online distributed (LOOD) algorithmic framework for active distribution networks with numerous photovoltaic inverters and invert air conditionings (IACs). In the proposed scheme, ADNs can track an active power setpoint reference at the substation in response to transmission-level requests while concurrently minimizing the utility loss and ensuring the security of voltages. In contrast to conventional distributed optimization methods that employ the setpoints for controllable devices only when the algorithm converges, the proposed LOOD can carry out the setpoints immediately relying on the current measurements and operation conditions. Notably, the time-coupling constraints of IACs are decoupled for online implementation with Lyapunov optimization technique. An incentive scheme is tailored to coordinate the customer-owned assets in lieu of the direct control from network operators. Optimality and convergency are characterized analytically. Finally, we corroborate the proposed method on a modified version of 33-node test feeder. <div><br></div>


2014 ◽  
Vol 24 (01) ◽  
pp. 1550009 ◽  
Author(s):  
Xiaodao Chen ◽  
Shiyan Hu

Growing concerns on the energy crisis impose great challenges in development and deployment of the smart grid technologies into the existing electrical power system. A key enabling technology in smart grid is distributed generation, which refers to the technology that power generating sources are located in a highly distributed fashion and each customer is both a consumer and a producer for energy. An important optimization problem in distributed generation design is the insertion of distributed generators (DGs), which are often renewable resources exploiting e.g., photovoltaic, hydro, wind, ocean energy. In this paper, a new power loss filtering based sensitivity guided cross entropy (CE) algorithm is proposed for the distributed generator insertion problem. This algorithm is based on the advanced CE optimization technique which exploits the idea of importance sampling in performing optimization. Our experimental results demonstrate that on large distribution networks, our algorithm can largely reduce (up to 179.3%) power loss comparing to a state-of-the-art sensitivity guided greedy algorithm with small runtime overhead. In addition, our algorithm runs about 5× faster than the classical CE algorithm due to the integration of power loss filtering and sensitivity optimization. Moreover, all existing techniques only test on very small distribution systems (usually with < 50 nodes) while our experiments are performed on the distribution networks with up to 5000 nodes, which matches the realistic setup. These demonstrate the practicality of the proposed algorithm.


2014 ◽  
Vol 492 ◽  
pp. 460-466 ◽  
Author(s):  
Jorge Mendoza ◽  
Miguel López ◽  
Allison Delgado

Distributed generation (DG) is a recent trend of electricity generation, which aims to use various energy sources to inject electric power in a distributed manner at points close to the load. This paper develops an optimization model to choose the sizes and positions of DG in medium voltage distribution networks in order to minimize the power system losses, given a set of constraints. Ant Colony Optimization (ACO) was used as optimization technique, with excellent results.


2019 ◽  
Author(s):  
Shuai Fan ◽  
guangyu he ◽  
Xinyang Zhou ◽  
Mingjian Cui

This paper proposes a Lyapunov optimization-based <a><b> </b></a>online distributed (LOOD) algorithmic framework for active distribution networks with numerous photovoltaic inverters and invert air conditionings (IACs). In the proposed scheme, ADNs can track an active power setpoint reference at the substation in response to transmission-level requests while concurrently minimizing the utility loss and ensuring the security of voltages. In contrast to conventional distributed optimization methods that employ the setpoints for controllable devices only when the algorithm converges, the proposed LOOD can carry out the setpoints immediately relying on the current measurements and operation conditions. Notably, the time-coupling constraints of IACs are decoupled for online implementation with Lyapunov optimization technique. An incentive scheme is tailored to coordinate the customer-owned assets in lieu of the direct control from network operators. Optimality and convergency are characterized analytically. Finally, we corroborate the proposed method on a modified version of 33-node test feeder. <div><br></div>


2013 ◽  
Vol 66 (4) ◽  
pp. 849-864 ◽  
Author(s):  
Nicola Costantino ◽  
Mariagrazia Dotoli ◽  
Marco Falagario ◽  
Maria Pia Fanti ◽  
Agostino Marcello Mangini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document