additional rule
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
pp. 232-240
Author(s):  
Marian Gherman ◽  
◽  
Eugeniu Piterschi ◽  

Comparative law is an essential branch of the literature that aims to conduct a multi-faceted investigation of some types of illicit acts at the international level. The crime of falsifying evidence from the international normative perspective, offers us the opportunity to analyze, systematize and address a new typical way or an additional rule for the Criminal Law of the Republic of Moldova. Therefore, in the present scientific approach we propose as an essential desideratum, the analysis of the antisocial actions of falsification of evidence at international level for a good systematization and adjustment of the national legislation.


2021 ◽  
Vol 12 (03) ◽  
pp. 621-628
Author(s):  
Diana J. Schreier ◽  
Jenna K. Lovely

Abstract Background The Clinical Monitoring List (CML) is a real-time scoring system and intervention tool used by Mayo Clinic pharmacists caring for hospitalized patients. Objective The study aimed to describe the iterative development and implementation of pharmacist clinical monitoring tools within the electronic health record at a multicampus health system enterprise. Methods Between October 2018 and January 2019, pharmacists across the enterprise were surveyed to determine opportunities and gaps in CML functionality. Responses were received from 39% (n = 162) of actively staffing inpatient pharmacists. Survey responses identified three main gaps in CML functionality: (1) the desire for automated checklists of tasks, (2) additional rule logic closely aligning with clinical practice guidelines, and (3) the ability to dismiss and defer rules. The failure mode and effect analysis were used to assess risk areas within the CML. To address identified gaps, two A/B testing pilots were undertaken. The first pilot analyzed the effect of updated CML rule logic on pharmacist satisfaction in the domains of automated checklists and guideline alignment. The second pilot assessed the utility of a Clinical Monitoring Navigator (CMN) functioning in conjunction with the CML to display rules with selections to dismiss or defer rules until a user-specified date. The CMN is a workspace to guide clinical end user workflows; permitting the review and actions to be completed within one screen using EHR functionality. Results A total of 27 pharmacists across a broad range of practice specialties were selected for two separate two-week pilot tests. Upon pilot completion, participants were surveyed to assess the effect of updates on performance gaps. Conclusion Findings from the enterprise-wide survey and A/B pilot tests were used to inform final build decisions and planned enterprise-wide updated CML and CMN launch. This project serves as an example of the utility of end-user feedback and pilot testing to inform project decisions, optimize usability, and streamline build activities.


2018 ◽  
Author(s):  
Robert M. Hanson ◽  
John Mayfield ◽  
Mikko J. Vainio ◽  
Andrey Yerin ◽  
Dmitry Redkin ◽  
...  

<div> <div> <div> <p>The most recent version of the Cahn-Ingold-Prelog rules for the determination of stereodescriptors as described in Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013 (the “Blue Book”) were analyzed by an international team of cheminformatics software developers. Algorithms for machine implementation were designed, tested, and cross-validated. Deficiencies in Sequence Rules 1b and 2 were found, and proposed language for their modification is presented. A concise definition of an additional rule (“Rule 6,” below) is proposed, which succinctly covers several cases only tangentially mentioned in the 2013 recommendations. Each rule is discussed from the perspective of machine implementation. The four resultant implementations are supported by validation suites in 2D and 3D SDF format as well as SMILES. The validation suites include all significant examples in Chapter 9 of the Blue Book, as well as several additional structures that highlight more complex aspects of the rules not addressed or not clearly analyzed in that work. These additional structures support a case for the need for modifications of the Sequence Rules. </p> </div> </div> </div>


2018 ◽  
Author(s):  
Robert M. Hanson ◽  
John Mayfield ◽  
Mikko J. Vainio ◽  
Andrey Yerin ◽  
Dmitry Redkin ◽  
...  

<div> <div> <div> <p>The most recent version of the Cahn-Ingold-Prelog rules for the determination of stereodescriptors as described in Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013 (the “Blue Book”) were analyzed by an international team of cheminformatics software developers. Algorithms for machine implementation were designed, tested, and cross-validated. Deficiencies in Sequence Rules 1b and 2 were found, and proposed language for their modification is presented. A concise definition of an additional rule (“Rule 6,” below) is proposed, which succinctly covers several cases only tangentially mentioned in the 2013 recommendations. Each rule is discussed from the perspective of machine implementation. The four resultant implementations are supported by validation suites in 2D and 3D SDF format as well as SMILES. The validation suites include all significant examples in Chapter 9 of the Blue Book, as well as several additional structures that highlight more complex aspects of the rules not addressed or not clearly analyzed in that work. These additional structures support a case for the need for modifications of the Sequence Rules. </p> </div> </div> </div>


Quantum ◽  
2017 ◽  
Vol 1 ◽  
pp. 38 ◽  
Author(s):  
Philipp Andres Höhn

We develop an operational approach for reconstructing the quantum theory of qubit systems from elementary rules on information acquisition. The focus lies on an observerOinterrogating a systemSwith binary questions andS's state is taken asO's `catalogue of knowledge' aboutS. The mathematical tools of the framework are simple and we attempt to highlight all underlying assumptions. Four rules are imposed, asserting (1) a limit on the amount of information available toO; (2) the mere existence of complementary information; (3)O's total amount of information to be preserved in-between interrogations; and, (4)O's `catalogue of knowledge' to change continuously in time in-between interrogations and every consistent such evolution to be possible. This approach permits a {\it constructive} derivation of quantum theory, elucidating how the ensuing independence, complementarity and compatibility structure ofO's questions matches that of projective measurements in quantum theory, how entanglement and monogamy of entanglement, non-locality and, more generally, how the correlation structure of arbitrarily many qubits and rebits arises. The rules yield a reversible time evolution and a quadratic measure, quantifyingO's information aboutS. Finally, it is shown that the four rules admit two solutions for the simplest case of a single elementary system: the Bloch ball and disc as state spaces for a qubit and rebit, respectively, together with their symmetries as time evolution groups. The reconstruction for arbitrarily many qubits is completed in a companion paper [P. A. Höhn and C. S. P. Wever, Phys. Rev. A 95 (2017) 012102] where an additional rule eliminates the rebit case. This approach is inspired by (but does not rely on) the relational interpretation and yields a novel formulation of quantum theory in terms of questions.


2016 ◽  
Vol 20 (4) ◽  
pp. 1091-1103 ◽  
Author(s):  
Marina Barbaric ◽  
Drazen Loncar

The increasing energy production from variable renewable energy sources such as wind and solar has resulted in several challenges related to the system reliability and efficiency. In order to ensure the supply-demand balance under the conditions of higher variability the micro-grid concept of active distribution networks arising as a promising one. However, to achieve all the potential benefits that micro-gird concept offer, it is important to determine optimal operating strategies for micro-grids. The present paper compares three energy management strategies, aimed at ensuring economical micro-grid operation, to find a compromise between the complexity of strategy and its efficiency. The first strategy combines optimization technique and an additional rule while the second strategy is based on the pure optimization approach. The third strategy uses model based predictive control scheme to take into account uncertainties in renewable generation and energy consumption. In order to compare the strategies with respect to cost effectiveness, a residential micro-grid comprising photovoltaic modules, thermal energy storage system, thermal loads, electrical loads as well as combined heat and power plant, is considered.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Junqing Shi ◽  
Lin Cheng ◽  
Jiancheng Long ◽  
Yuanlin Liu

A new cellular automaton (CA) model is proposed to simulate traffic dynamics in urban two-way road network systems. The NaSch rule is adopted to represent vehicle movements on road sections. Two novel rules are proposed to move the vehicles in intersection areas, and an additional rule is developed to avoid the “gridlock” phenomenon. Simulation results show that the network fundamental diagram is very similar to that of road traffic flow. We found that the randomization probability and the maximum vehicle speed have significant impact on network traffic mobility for free-flow state. Their effect may be weak when the network is congested.


Author(s):  
Shawn Hedman

We consider various extensions of first-order logic. Informally, a logic 𝓛 is an extension of first-order logic if every sentence of first-order logic is also a sentence of 𝓛. We also require that 𝓛 is closed under conjunction and negation and has other basic properties of a logic. In Section 9.4, we list the properties that formally define the notion of an extension of first-order logic. Prior to Section 9.4, we provide various natural examples of such extensions. In Sections 9.1–9.3, we consider, respectively, second-order logic, infinitary logics, and logics with fixed-point operators. We do not provide a thorough treatment of any one of these logics. Indeed, we could easily devote an entire chapter to each. Rather, we define each logic and provide examples that demonstrate the expressive power of the logics. In particular, we show that none of these logics has compactness. In the final Section 9.4, we prove that if a proper extension of first-order logic has compactness, then the Downward Löwenhiem–Skolem theorem must fail for that logic. This is Lindstrom’s theorem. The Compactness theorem and Downward Löwenheim–Skolem theorem are two crucial results for model theory. Every property of first-order logic from Chapter 4 is a consequence of these two theorems. Lindström’s theorem implies that the only extension of first-order logic possessing these properties is first-order logic itself. Second-order logic is the extension of first-order logic that allows quantification of relations. The symbols of second-order logic are the same symbols used in first-order logic. The syntax of second-order logic is defined by adding one rule to the syntax of first-order logic. The additional rule makes second-order logic far more expressive than first-order logic. Specifically, the syntax of second-order logic is defined as follows. Any atomic first-order formula is a formula of second-order logic. Moreover, we have the following four rules: (R1) If φ is a formula then so is ¬φ. (R2) If φ and ψ are formulas then so is φ ∧ ψ. (R3) If φ is a formula, then so is ∃x φ for any variable x.


1994 ◽  
Vol 76 (2) ◽  
pp. 882-892 ◽  
Author(s):  
Z. L. Jiang ◽  
G. S. Kassab ◽  
Y. C. Fung

For modeling of a vascular tree for hemodynamic analysis, the well-known Weibel, Horsfield, and Strahler systems have three shortcomings: vessels of the same order are all treated as in parallel, despite the fact that some are connected in series; histograms of the diameters of vessels in the successive orders have wide overlaps; and the “small-twigs-on-large-trunks” phenomenon is not given a quantitative expression. To improve the accuracy of the hemodynamic circuit model, we made a distinction between vessel segments and vessel elements: a segment is a vessel between two successive nodes of bifurcation; an element is a union of a group of segments of the same order that are connected in series. In an equivalent circuit, all elements of the same order are considered as arranged in parallel. Then, we follow the ordering method of Horsfield and Strahler, with introduction of an additional rule for the assignment of order numbers. If Dn and SDn denote the mean and standard deviation of the diameters of vessels of order n, then our rule divides the gap between Dn--SDn and Dn--1 + SDn--1 evenly between orders n and n--1. Finally, we introduced a connectivity matrix with a component in the mth row and the nth column that is the average number of vessels of order m that grow out of the vessels of order n. This method was applied to the rat. We found that the rat pulmonary arterial tree has 11 orders of vessels and that the geometry is fractal within these orders. The ratios of diameters, lengths, and numbers of elements in successive orders are 1.58, 1.60, and 2.76, respectively. The connectivity matrix reveals interesting features beyond the fractal concept. New features are found in the variation of the total cross-sectional area of elements with order numbers.


1989 ◽  
Vol 3 (1) ◽  
pp. 13-54 ◽  
Author(s):  
J. Robin B. Cockett ◽  
Jalel Zrida ◽  
J. Douglas Birdwell

The manipulations and basic results of stochastic decision theory are introduced. The manipulations of idempotence, transposition, and repetition, introduced for deterministic decision trees, can be used to manipulate stochastic trees. However, there are two major differences. First, in order to obtain a complete set of manipulations it is necessary to introduce an additional rule called indifference. Second, these identities must be treated as rules of inference. Not all the rules can be soundly applied in both directions; in particular, idempotence is a one-way rule.A manipulation of a stochastic decision tree not only alters the structure of the tree, but also the probability distributions associated with the tree. This allows probability calculation to be viewed as structural manipulation. In particular, a retrieval corresponds to a conditional probability calculation. The algorithm for doing this calculation has, therefore, many applications. For example, the solution to the classical state-estimation problem and the retrieval of information from probabilistic or uncertain knowledge bases may both be viewed as an application of this algorithm.The main result of this paper is that these manipulations are complete and sound. In order to prove this result, it is necessary to have a semantic setting for these theories. The setting chosen is the category of description spaces which is a generalization of the category of bounded measure spaces with maps which do not increase measure. The proof of this result exploits the retrieval properties of stochastic terms and its relationship to conditional probability calculations in the models.


Sign in / Sign up

Export Citation Format

Share Document