An improved feature extraction method using texture analysis with LBP for bearing fault diagnosis

2020 ◽  
Vol 87 ◽  
pp. 106019 ◽  
Author(s):  
Kaplan Kaplan ◽  
Yılmaz Kaya ◽  
Melih Kuncan ◽  
Mehmet Recep Mi̇naz ◽  
H. Metin Ertunç
Entropy ◽  
2018 ◽  
Vol 20 (4) ◽  
pp. 212 ◽  
Author(s):  
Bin Ju ◽  
Haijiao Zhang ◽  
Yongbin Liu ◽  
Fang Liu ◽  
Siliang Lu ◽  
...  

Author(s):  
Ying Zhang ◽  
Hongfu Zuo ◽  
Fang Bai

There are mainly two problems with the current feature extraction methods used in the electrostatic monitoring of rolling bearings, which affect their abilities to identify early faults: (1) since noises are mixed in the electrostatic signals, it is difficult to extract weak early fault features; (2) traditional time and frequency domain features have limited ability to provide a quantitative indicator of degradation state. With regard to these two problems, a new feature extraction method for rolling bearing fault diagnosis by electrostatic monitoring sensors is proposed in this paper. First, the spectrum interpolation is adopted to suppress the power-frequency interference in the electrostatic signal. Then the resultant signal is used to construct Hankel matrix, the number of useful components is automatically selected based on the difference spectrum of singular values, after that the signal is reconstructed to remove background noises and random pulses. Finally, the permutation entropy of the denoised signal is calculated and smoothed using the exponential weighted moving average method, which is used to be a quantitative indicator of bearing performance state. The simulation and experimental results show that the proposed method can effectively remove noises and significantly bring forward the time when early faults are detected.


Sign in / Sign up

Export Citation Format

Share Document