adaptive optimization
Recently Published Documents





2022 ◽  
Vol 14 (2) ◽  
pp. 309
Feng Zhao ◽  
Teng Wang ◽  
Leixin Zhang ◽  
Han Feng ◽  
Shiyong Yan ◽  

With the launch of the Sentinel-1 satellites, it becomes easy to obtain long time-series dual-pol (i.e., VV and VH channels) SAR images over most areas of the world. By combining the information from both VV and VH channels, the polarimetric persistent scatterer interferometry (PolPSI) techniques is supposed to achieve better ground deformation monitoring results than conventional PSI techniques (using only VV channel) with Sentinel-1 data. According to the quality metric used for polarimetric optimizations, the most commonly used PolPSI techniques can be categorized into three main categories. They are PolPSI-ADI (amplitude dispersion index as the phase quality metric), PolPSI-COH (coherence as the phase quality metric), and PolPSI-AOS (taking adaptive optimization strategies). Different categories of PolPSI techniques are suitable for different study areas and with different performances. However, the study that simultaneously applies all the three types of PolPSI techniques on Sentinel-1 PolSAR images is rare. Moreover, there has been little discussion about different characteristics of the three types of PolPSI techniques and how to use them with Sentinel-1 data. To this end, in this study, three data sets in China have been used to evaluate the three types of PolPSI techniques’ performances. Based on results obtained, the different characteristics of PolPSI techniques have been discussed. The results show that all three PolPSI techniques can improve the phase quality of interferograms. Thus, more qualified pixels can be used for ground deformation estimation by PolPSI methods with respect to the PSI technique. Specifically, this pixel density improvement is 50%, 12%, and 348% for the PolPSI-ADI, PolPSI-COH, and POlPSI-AOS, respectively. PolPSI-ADI is the most efficient method, and it is the first choice for the area with abundant deterministic scatterers (e.g., urban areas). Benefitting from its adaptive optimization strategy, PolPSI-AOS has the best performances at the price of highest computation cost, which is suitable for rural area applications. On the other hand, limited by the medium resolution of Sentinel-1 PolSAR images, PolPSI-COH’s improvement with respect to conventional PSI is relatively insignificant.

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Yanping Ma

In order to improve the planning ability of the badminton backcourt stroke line, this study designs a badminton backcourt stroke line planning method based on deep learning. Firstly, the trajectory adaptive learning method of motion primitives is used to design the hitting line nodes and path space, so as to construct the shortest distributed grid structure model of the hitting line. Then, the constraint parameters of hitting route planning are analyzed, and then the hitting position and player posture are controlled according to node positioning and shortest path optimization deployment. Finally, the adaptive optimization of the route planning process is realized by combining the deep learning method. The simulation results show that this method has good learning control ability and good convergence performance and improves the reliability of badminton backcourt hitting line planning.

2021 ◽  

Particle swarm optimization (PSO) is a search algorithm based on stochastic and population-based adaptive optimization. In this paper, a pathfinding strategy is proposed to improve the efficiency of path planning for a broad range of applications. This study aims to investigate the effect of PSO parameters (numbers of particle, weight constant, particle constant, and global constant) on algorithm performance to give solution paths. Increasing the PSO parameters makes the swarm move faster to the target point but takes a long time to converge because of too many random movements, and vice versa. From a variety of simulations with different parameters, the PSO algorithm is proven to be able to provide a solution path in a space with obstacles.

Wenqian Liang ◽  
Ji Wang ◽  
Weidong Bao ◽  
Xiaomin Zhu ◽  
Qingyong Wang ◽  

AbstractMulti-agent reinforcement learning (MARL) methods have shown superior performance to solve a variety of real-world problems focusing on learning distinct policies for individual tasks. These approaches face problems when applied to the non-stationary real-world: agents trained in specialized tasks cannot achieve satisfied generalization performance across multiple tasks; agents have to learn and store specialized policies for individual task and reliable identities of tasks are hardly observable in practice. To address the challenge continuously adapting to multiple tasks in MARL, we formalize the problem into a two-stage curriculum. Single-task policies are learned with MARL approaches, after that we develop a gradient-based Self-Adaptive Meta-Learning algorithm, SAML, that cannot only distill single-task policies into a unified policy but also can facilitate the unified policy to continuously adapt to new incoming tasks. In addition, to validate the continuous adaptation performance on complex task, we extend the widely adopted StarCraft benchmark SMAC and develop a new multi-task multi-agent StarCraft environment, Meta-SMAC, for testing various aspects of continuous adaptation method. Our experiments with a population of agents show that our method enables significantly more efficient adaptation than reactive baselines across different scenarios.

Oleksandr Yefymenko ◽  
Tetiana Pluhina

The task of positioning the working mechanisms CRM at this time is not enough. As a result of the analysis the purpose of research is set, namely: to increase of functioning efficiency mechanisms CRM with working environment using mathematical models and adaptation algorithm in a limited time decision. Such methods of analysis include fractal analysis, neural network method, fuzzy set method, geostatistical data analysis. The element base of positioning systems and benefits of implementation are substantiated. The use of a GPS intensifier makes it possible to predict the work of actuators CRM in real time. The result of the research is algorithm of positioning the working mechanisms CRM: determination of the location of the base CRM in a 3-dimensional coordinate system; filtering measurements; predicting the position of the working mechanism (the algorithm for choosing a solution for the state of the monitored object is based on both the probability of obtaining certain results and their usefulness). The originality lies in the fact that the using modern information and software tools allows to describe the trajectory in the coordinate system of the base machine in accordance with the point measurement, and describe the relationship between changed coordinates, which makes it possible to model and predict the workflow. Proposals for the use of software in positioning systems, which provides adaptive optimization and advantages of introduction of the newest technologies of intellectualization of work processes.

Bharathi Garimella ◽  
G. V. S. N. R. V. Prasad ◽  
M. H. M. Krishna Prasad

The churn prediction based on telecom data has been paid great attention because of the increasing the number telecom providers, but due to inconsistent data, sparsity, and hugeness, the churn prediction becomes complicated and challenging. Hence, an effective and optimal prediction of churns mechanism, named adaptive firefly-spider optimization (adaptive FSO) algorithm, is proposed in this research to predict the churns using the telecom data. The proposed churn prediction method uses telecom data, which is the trending domain of research in predicting the churns; hence, the classification accuracy is increased. However, the proposed adaptive FSO algorithm is designed by integrating the spider monkey optimization (SMO), firefly optimization algorithm (FA), and the adaptive concept. The input data is initially given to the master node of the spark framework. The feature selection is carried out using Kendall’s correlation to select the appropriate features for further processing. Then, the selected unique features are given to the master node to perform churn prediction. Here, the churn prediction is made using a deep convolutional neural network (DCNN), which is trained by the proposed adaptive FSO algorithm. Moreover, the developed model obtained better performance using the metrics, like dice coefficient, accuracy, and Jaccard coefficient by varying the training data percentage and selected features. Thus, the proposed adaptive FSO-based DCNN showed improved results with a dice coefficient of 99.76%, accuracy of 98.65%, Jaccard coefficient of 99.52%.

Sign in / Sign up

Export Citation Format

Share Document