A cross domain feature extraction method based on transfer component analysis for rolling bearing fault diagnosis

Author(s):  
Chen Chen ◽  
Zhiheng Li ◽  
Jun Yang ◽  
Bin Liang
Entropy ◽  
2018 ◽  
Vol 20 (4) ◽  
pp. 212 ◽  
Author(s):  
Bin Ju ◽  
Haijiao Zhang ◽  
Yongbin Liu ◽  
Fang Liu ◽  
Siliang Lu ◽  
...  

Author(s):  
Ying Zhang ◽  
Hongfu Zuo ◽  
Fang Bai

There are mainly two problems with the current feature extraction methods used in the electrostatic monitoring of rolling bearings, which affect their abilities to identify early faults: (1) since noises are mixed in the electrostatic signals, it is difficult to extract weak early fault features; (2) traditional time and frequency domain features have limited ability to provide a quantitative indicator of degradation state. With regard to these two problems, a new feature extraction method for rolling bearing fault diagnosis by electrostatic monitoring sensors is proposed in this paper. First, the spectrum interpolation is adopted to suppress the power-frequency interference in the electrostatic signal. Then the resultant signal is used to construct Hankel matrix, the number of useful components is automatically selected based on the difference spectrum of singular values, after that the signal is reconstructed to remove background noises and random pulses. Finally, the permutation entropy of the denoised signal is calculated and smoothed using the exponential weighted moving average method, which is used to be a quantitative indicator of bearing performance state. The simulation and experimental results show that the proposed method can effectively remove noises and significantly bring forward the time when early faults are detected.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879825 ◽  
Author(s):  
Fengtao Wang ◽  
Gang Deng ◽  
Chenxi Liu ◽  
Wensheng Su ◽  
Qingkai Han ◽  
...  

To avoid catastrophic failures in rotating machines, it is of great significance to continuously monitor and diagnose the running state of rolling bearings. In this article, a deep feature extraction method for rolling bearing fault diagnosis based on empirical mode decomposition and kernel function is proposed. First, the vibration signals under different states of rolling bearing are decomposed by empirical mode decomposition. Second, to extract more representative high-level features, the obtained intrinsic mode functions are preprocessed with singular value decomposition to acquire singular value parameters, which are regarded as the inputs of the proposed stacked kernel sparse autoencoder network. The proposed method does not depend on prior knowledge of fault diagnosis and even does not need the signal denoising processing, simplifying the traditional process of feature extraction of rolling bearing fault diagnosis. To validate the superiority of the proposed diagnosis network, experiments and comparisons have been made as well. The achieved results demonstrated that the proposed empirical mode decomposition and stacked kernel sparse autoencoder–based diagnosis method has a superior performance in rolling bearing fault diagnosis.


2020 ◽  
Vol 87 ◽  
pp. 106019 ◽  
Author(s):  
Kaplan Kaplan ◽  
Yılmaz Kaya ◽  
Melih Kuncan ◽  
Mehmet Recep Mi̇naz ◽  
H. Metin Ertunç

Sign in / Sign up

Export Citation Format

Share Document